Lifted Surfacing of Generalized Sweep Volumes

YIWEN JU, Washington University in St. Louis, USA
QINGNAN ZHOU, Adobe Research, USA
XINGYI DU, Tencent, USA

NATHAN CARR, Adobe Research, USA

TAO JU, Washington University in St. Louis, USA

Computing the boundary surface of the 3D volume swept by a rigid or de-
forming solid remains a challenging problem in geometric modeling. Existing
approaches are often limited to sweeping rigid shapes, cannot guarantee a
watertight surface, or struggle with modeling the intricate geometric features
(e.g., sharp creases and narrow gaps) and topological features (e.g., interior
voids). We make the observation that the sweep boundary is a subset of the
projection of the intersection of two implicit surfaces in a higher dimension,
and we derive a characterization of the subset using winding numbers. These
insights lead to a general algorithm for any sweep represented as a smooth
time-varying implicit function satisfying a genericity assumption, and it
produces a watertight and intersection-free surface that better approximates
the geometric and topological features than existing methods.

CCS Concepts: + Computing methodologies — Volumetric models;
Mesh models.

Additional Key Words and Phrases: Sweep volume, implicit surfaces, ar-
rangement, winding numbers

ACM Reference Format:

Yiwen Ju, Qingnan Zhou, Xingyi Du, Nathan Carr, and Tao Ju. 2025. Lifted
Surfacing of Generalized Sweep Volumes. ACM Trans. Graph. 44, 6, Arti-
cle 248 (December 2025), 17 pages. https://doi.org/10.1145/3763360

1 Introduction

A sweep volume refers to the space swept by a moving, possibly trans-
forming and deforming, solid shape (called a brush) over time. In
solid modeling, sweeping is a classical and intuitive design metaphor,
and intricate shapes can be created by combinations of brush shapes
and sweep motions (see Figure 1). Other applications of sweep
volumes include simulating machine milling results, computing
workspace in robotics, and performing continuous collision detec-
tion in motion planning [Abdel-Malek et al. 2006].

Modeling the boundary of a sweep volume has proven to be a
daunting task. As the sweep boundary is characterized by the solu-
tion of non-linear equations [Martin and Stephenson 1990], exact
computation is infeasible except for simple brush shapes and sweep
motions. Even approximating the sweep boundary is challenging
due to its unique geometric and topological features. First, the sweep
boundary may not be a smooth surface, since sharp creases can ap-
pear where instances of the brush at different times collide with

Authors’ Contact Information: Yiwen Ju, Washington University in St. Louis, USA,
yiwen.ju@wustl.edu; Qingnan Zhou, Adobe Research, USA, gzhou@adobe.com; Xingyi
Du, Tencent, USA, xingyidu@global.tencent.com; Nathan Carr, Adobe Research, USA,
ncarr@adobe.com; Tao Ju, Washington University in St. Louis, USA, taoju@wustl.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 1557-7368/2025/12-ART2438

https://doi.org/10.1145/3763360

Fig. 1. The sweep boundary computed by our method for sweeping an
implicit surface (the Fertility) along a down spiral while offsetting the sur-
face inward at the same time, changing its shape and topology. Showing
the surface with plain color (left), colored by time (middle), and in trans-
parency (right). Our method produces a watertight, intersection-free surface
equipped with sharp creases (metal wires).

each other (e.g., metal wires in Figure 1 and green curves in Figure 2
(b)). Second, different parts of the sweep boundary may become very
close to each other, creating narrow gaps (see Figure 6 (b)). Lastly,
the sweep boundary may consist of multiple connected components,
some of which enclose “voids” that are not connected to the outside
(see Figure 2 (b)). While the geometric features are important for
shape design, detecting voids is essential for collision detection and
workspace computation.

Despite decades of research, it remains challenging to approxi-
mate these topological and geometric features for arbitrary brush
shapes and deformations while ensuring a watertight and intersection-
free surface (see review in Section 3.1). While volumetric methods
can be applied to a broad range of sweeps and produce a closed
surface, the use of a grid fundamentally limits their ability to model
fine geometric details, resulting in rounded creases (Figure 2 (c,d))
and artifacts at narrow gaps (Figure 6 (c,d)). While such details are
better approximated by mesh-based methods, such methods are cur-
rently limited to simple (e.g., affine) sweep motions, may produce
gaps and self-intersections, and omit the interior voids.

In this paper, we present a new method for surfacing sweep
boundaries in 3D that improves existing methods in generality,
robustness, and feature awareness. Our method works on any gen-
eralized sweep that is represented by a smooth 4D implicit function.
The representation accommodates a wide range of deformations
during sweeping, including those with topological changes (Figure
1). Our method better approximates the interior voids, sharp creases

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

https://doi.org/10.1145/3763360
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3763360

2482 « Ju,Y.etal

(a) sweep

#v: 109,121 #t: 221,008 56.6 sec
(b) ours

#v: 119,465 #t: 238,908 136.2 sec
(c) [Sellan 21]

#v: 749,476 #t: 1,498,928 766.65 sec
(d) [Sellan 21]

Fig. 2. Comparing sweep boundaries computed by our method (b) and the volumetric method of [Sellan et al. 2021] at grid cell size 0.005 (c) and 0.002 (d) on a
moving and flipping torus (a), showing the exterior surfaces (top) and cut-away views (middle) with zoom-ins on a sharp crease and a void (bottom). While
[Sellan et al. 2021] produces rounded creases, even on a fine grid, our method keeps the creases sharp.

and narrow spaces than existing methods while ensuring a closed
and intersection-free surface (see Figures 2 (b) and 6 (b)).

Our method combines elements from both volumetric and mesh-
based methods. Like many mesh-based methods, our method com-
putes and trims a superset of the sweep boundary, known as the
envelope [Pottmann and Peternell 2000; Wang and Wang 1986]. To
make the process robust and general, we make two key observa-
tions (Section 4). First, an envelope in R3 is the projection of the
intersection of two implicit hypersurfaces in R*, which we call the
lifted envelope. This observation enables robust computation of the
envelope via iso-surfacing. Second, the subset of the envelope that
lies on the sweep boundary can be simply characterized as those
bounding regions with 0 winding number, if the envelope is prop-
erly oriented. Leveraging existing packages for mesh arrangement
and winding numbers [Zhou et al. 2016], this observation makes
the trim step simple to implement and numerically robust.

The core of our method is a grid-based algorithm that computes
the lifted envelope, a 2-manifold at the intersection of two level
sets in 4D (Section 6). Our tailored algorithm improves the triangle
quality of existing methods for discretizing vector-valued level sets
in high dimensions (see review in Section 3.2), and it ensures a
correct orientation needed for trimming. Coupled with adaptive
grid refinement (Section 7), our algorithm can be applied to sweep
boundaries with complex topology and geometry.

To summarize, our work makes the following theoretical and
algorithmic contributions:

(1) A novel characterization of the sweep boundary, based on
level set intersection and winding numbers, that applies to
generalized sweeps in any dimension.

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

(2) An algorithm for computing sweep boundaries in R that
is more robust than mesh-based methods and better models
sharp and narrow features than volumetric methods.

(3) A method for computing the lifted envelope in R* that im-
proves the mesh quality of existing methods for discretizing
vector-valued level sets in higher dimensions.

2 Preliminaries

We review the definitions and properties of sweeps that are essential
for our paper. More comprehensive and in-depth discussions can be
found in classical works such as [Abdel-Malek and Yeh 1997; Black-
more and Leu 1992; Erdim and Ilies 2007; Martin and Stephenson
1990; Pottmann and Peternell 2000].

2.1 Defining sweeps

We consider a generalized sweep (or simply a sweep) in R" defined
implicitly by a smooth (at least C?) (n + 1)-dimensional sweep func-
tion f(x, t), where x is a point in R” and ¢ is a scalar time in the
unit range [0, 1]. The brush at time ¢ consists of all points x where
f(x,t) < 0. The sweep volume consists of all points in R” that are
inside the brush for some ¢ € [0, 1], and the boundary of the sweep
volume is known as the sweep boundary.

As a special case, consider a “rigid” sweep where the brush shape
translates and rotates over time. Let b(x) be the implicit function
of the brush at time 0, T(¢) and R(t) be the translation vector and
rotation matrix as functions of ¢ (that is, a point x at time 0 is moved
to location T(t) + R(¢) - x at time t). This sweep can be expressed
by the following sweep function,

Fea) =b(R™ (1) - (x = T(1)). 1)

Sweep boundary

-
W

M

(a) Sweep function

(b) Sweep volume

Fig. 3. Left: Cross-sections of the 3D sweep function that defines a 2D disk
translating over time. Right: The sweep volume (shaded) and boundary
(thickened).

Figure 3 illustrates an example of this special case for n = 2, where
the brush is a circular disk that translates along a curve. Due to the
simplicity of this example, we will use it as a running example in
our discussions.

In general, the brush may change its shape over time, even altering
its topology (e.g., splitting or merging). As a result, our generalized
sweep definition is broader than the sweep with general deformations
[Blackmore et al. 1994], which is limited to brush deformations
defined by diffeomorphisms.

2.2 Characterizing sweep boundary

The sweep boundary can be defined implicitly as the zero-level set
of the following function,
f*(x) = min f(x,1). (2)
tef0,1]

This is because x is inside the sweep volume when f(x, ¢) < 0 for
some ¢ € [0, 1], which happens if and only if min;c[q 1] f(x,) < 0.
Note that f* is continuous but not smooth. In particular, it is not
smooth where the minimum is attained by more than one ¢. The
non-smoothness of f* is manifested on the sweep boundary as sharp
features, such as corners for n = 2 and crease curves for n = 3.

Alternatively, the sweep boundary can be defined as a subset of
another structure. Consider the lifted sweep volume defined as the
set of points {x, t} in R™! where f(x,t) < 0, whose boundary will
be called the sweep set. Intuitively, the sweep volume in R" is the
“shadow” of the lifted sweep volume viewed in time, and the sweep
boundary in R” is the projection of the “silhouette” of the sweep set
(see Figure 4 (a)). Points {x, t} on this silhouette satisfy f(x,t) =0
(as they are on the sweep set) and additional equality or inequality
on the derivative of sweep function in time, f’(x,t) = 9f (x, t)/dt,
depending on the value of ¢:

(1) 0 <t <1land f'(x,£) =0.

(2) t=0and f’(x,0) > 0.

(3) t=1and f'(x,1) < 0.

If the sweep is defined by a diffeomorphic map, points satisfying
these conditions are known respectively as grazing, ingress, and
egress points [Blackmore and Leu 1992]. To be consistent with the
nomenclature in this work, we shall call them the contour, bottom
cap, and top cap, and their union the lifted envelope (Figure 4 (a)).

Lifted Surfacing of Generalized Sweep Volumes « 248:3

. e

Cap
(0]
E Contour
Cap
,// \\

(a) Lifted envelope (b) Envelope

Fig. 4. Left: The 3D lifted sweep volume bounded by the sweep set, whose
silhouette is the lifted envelope (made up of the contour, bottom and top
caps). Right: The lifted envelope projects to the envelope, which contains
the sweep boundary (see Figure 3 (b)) as a subset.

While every point on the sweep boundary is the projection of
some point from the lifted envelope, the reverse is not necessarily
true. The projection of the lifted envelope in R” is known as the
envelope, a possibly self-intersecting structure that has the defining
property that each point on the envelope is tangent to the brush
at some time. The envelope can be similarly defined using Sweep
Differential Equations [Blackmore and Leu 1992; Blackmore et al.
1997] or Jacobian rank deficiency [Abdel-Malek et al. 2001; Abdel-
Malek and Yeh 1997]. The sweep boundary is the subset of the
envelope that is not interior to the sweep volume (see Figure 4 (b)).

2.3 Singularities

Besides self-intersections, the envelope may contain non-smooth
features known as singularities. These features are projections of
points on the lifted envelope with vanishing high-order derivatives.
Specifically, an envelope point x is called singular if there exists
some t € (0, 1) such that {x, ¢t} is on the contour part of the lifted
envelope (i.e., f(x,t) = f'(x,t) = 0) and f”'(x,t) = 0, where f”’
indicates the second order partial derivative in ¢.

Singularities on the envelope can be further classified by the
highest order of vanishing derivatives (if such derivatives exist). A
singular point x is called a cusp if f(x,t) = f'(x,¢) = "' (x,t) =0
but f""’(x,t) # 0 for some t. Generically, the set of cusp points has
dimension n — 2, such as isolated points in n = 2 (Figure 5 (b)) and
curves in n = 3 (Figure 5 (e)). Note that cusps do not lie on the
sweep boundary. This is because the function fi(s) = f(x,s) has
a stationary point of reflection at s = t. Such points are not local
extrema (see Figure 5 (c)), and hence f(x,s) is negative in some
neighborhood of s = ¢, implying that x is inside the sweep volume.

We call a singular point x a pinchif f(x,t) = f'(x,t) = "' (x,t) =
f""(x,t) = 0 but f""”(x,t) # 0 for some t. The set of pinch points
generically has dimension (n — 3), such as isolated points in n = 3
(Figure 5 (e)). Unlike cusp points, a pinch point could lie on the
sweep boundary. This is because fx(s) = f(x,s) has an point of
undulation at s = t, which is a local extremum (see Figure 5 (f)). We
refer readers to classical works such as [Arnold et al. 1986; Whitney
1955] for in-depth discussions on singularities in mappings.

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

248:4 « Ju,Y.etal.

Fig. 5. Top: a 2D sweep (a), its envelope (b) with cusp points (magenta), and
a function (c) with a stationary point of inflection (magenta). Bottom: the
envelope (d) of the 3D sweep (see Figure 6 (a)), a cut-away view (e) revealing
the cusp curves (magenta) and pinch points (green), and a function (f) with
a point of undulation (green).

3 Related Works
3.1 Computing sweeps

Sweep volumes have been extensively studied in the past few decades
[Abdel-Malek et al. 2006]. We briefly review representative compu-
tational methods with an eye towards their robustness, generality,
and ability to approximate geometric and topological features.

3.1.1 Volumetric methods. These methods discretize the sweep
boundary on a volumetric grid to separate grid points that are inside
and outside the sweep volume. To determine whether a grid point x
is inside, many methods follow the implicit definition of the sweep
boundary (Equation 2) and compute the signed value f*(x) either
by discrete sampling (known as stamping) [Himmelstein et al. 2009;
Schroeder et al. 1994; Sourin and Pasko 1995; von Dziegielewski
et al. 2010] or root-finding [Sellan et al. 2021; Sourin and Pasko
1995]. While stamping introduces either aliasing artifacts (at low
grid resolutions) or large computational cost (at high resolutions),
root-finding produces smoother surfaces and can be made efficient
using tracing techniques such as space-time continuation [Sellan
et al. 2021]. Alternatively, a discrete inside/outside label at x can
be obtained by either intersecting the reverse sweep trajectory at x
with the brush at time 0 [Erdim and Ilies 2008, 2010; Ilies and Shapiro
1999; Rossignac et al. 2007] or propagating the labels from the out-
side towards an initial surface (as part of a mesh-based method)
[Kim et al. 2003; Peternell et al. 2005; Von Dziegielewski et al. 2013;
Zhang et al. 2009]. However, the former is limited to sweeps with
reversible trajectories, and the latter cannot recover interior voids.

A common drawback of volumetric methods is their limited abil-
ity to model fine geometric features, such as sharp creases and
closed-by surface parts, due to a finite grid resolution. They tend to
create rounded creases and artifacts near narrow spaces, as shown in
Figures 2 (c) and 6 (c). While using finer grids can improve the sharp-
ness and reduce artifacts, these issues never truly go away, and this
comes at the cost of significantly increased compute time and output
size, as shown in Figures 2 (d) and 6 (d). While feature-sensitive

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

iso-surfacing methods can be used, such as Dual Contouring [Ju
et al. 2002], they require additional information (e.g., normals) that
can be difficult to obtain precisely for sweep boundaries.

3.1.2 Mesh-based methods. These methods work by creating a set
of candidate surfaces, which contain the sweep boundary, then
trimming away the unwanted parts. We will separately discuss
methods that address each task.

A natural choice of the candidate surface is the envelope, as re-
viewed in Section 2.2. Since the envelope is described by the solution
of non-linear equations [Martin and Stephenson 1990], exact com-
putation is only possible for simple brush shapes and sweep motions
[Adsul et al. 2014, 2015; Kieffer and Litvin 1991; Machchhar et al.
2017; Rabl et al. 2008; Wang and Wang 1986]. Even approximating
the envelope is challenging, due to its self-intersecting structure and
singularities (see Section 2.3). Many methods construct the envelope
from points on the moving brush that are tangent to the envelope,
known as characteristic curves. These methods either sample the
curves as scattered points and then perform point-based surface
reconstruction [Blackmore and Leu 1992; Peternell et al. 2005], or
directly connect curves from adjacent time points into triangle strips
[Madrigal and Joy 1999; Yang and Abdel-Malek 2005] or skinned
parametric surfaces [Rossignac et al. 2007; Weinert et al. 2004; Xu
et al. 2007]. However, the connecting approach fails on complex
sweeps where the characteristic curves change significantly in shape
and topology over time.

Another type of candidate surface is the union of sweeps of the
boundary elements (e.g., edges and triangles) of the brush, which is
also known to contain the sweep boundary [Weld and Leu 1990].
Current methods for computing such candidate surfaces, however,
are limited to specific types of sweeps, such as a triangle mesh under-
going translation and rotation [Abrams and Allen 1995; Campen and
Kobbelt 2010; Kim et al. 2003; Von Dziegielewski et al. 2013; Zhang
et al. 2009] or a trivariate B-spline solid undergoing a parametric
transformation [Conkey and Joy 2000].

To trim away parts of the candidate surface that lie inside the
sweep volume, many methods employ front-propagation over the
arrangement of the surface [Abrams and Allen 1995; Campen and
Kobbelt 2010] or a volumetric grid [Kim et al. 2003; Peternell et al.
2005; Von Dziegielewski et al. 2013; Zhang et al. 2009], starting
from the outside of the sweep boundary. However, such propaga-
tion cannot reach interior voids, which are typically missing in the
output. Alternatively, point-wise classification (e.g., based on inter-
secting reverse trajectories with the brush) can be applied to prune
points or patches of the candidate surface [Blackmore and Leu 1992;
Blackmore et al. 1994, 1997, 1999; Weld and Leu 1990; Yang and
Abdel-Malek 2005]. However, naive pruning may result in gaps and
self-intersections on the output surface.

In summary, it remains challenging for mesh-based methods
to produce a water-tight, intersection-free sweep boundary with
interior voids for general brush shapes and motions.

3.1.3 Data driven methods. These methods learn to predict aspects
of a sweep, such as the volume measure [Chiang et al. 2020], or
a geometric representation of the sweep volume of a rigid sweep
[Marschner et al. 2023] or between a pair of robot configurations
[Baxter et al. 2020]. However, their success is limited to the range of

#v: 46,039
#t:92,868
19.1 sec

(b) ours

Lifted Surfacing of Generalized Sweep Volumes « 248:5

#v: 60,854
#:121,728
70.4 sec

#v: 550,700
#t:1,101,424
500.0 sec

(c) [Sellan 21] (d) [Sellan 21]

Fig. 6. Comparing sweep boundaries computed by our method (b) and by [Sellan et al. 2021] at grid cell size 0.003 (c) and 0.001 (d) for a translating sphere (a).
Boxes highlight narrow regions on the boundaries, where our method produces fewer artifacts and sharper creases.

sweeps (e.g., robot type or brush shape) in the training set, making
them difficult to generalize to arbitrary brushes and motions.

3.2 Level set intersection in higher dimensions

The core of our method computes the intersection of the level sets of
two functions in 4D. While discretizing the level set of a scalar func-
tion in 2 and 3 dimensions has been extensively studied [De Aratjo
et al. 2015], much less work exists in higher dimensions or for mul-
tiple functions. Current methods for computing the level set of a
scalar function in R” extend standard techniques in 3D, such as
Marching Cubes and Marching Tetrahedra, to work on a decom-
position of R” into hypercubes [Bhaniramka et al. 2004; Castelo
et al. 2022] or simplices [Schwaha and Heinzl 2010]. These methods
produce a (n— 1)-manifold represented as a polyhedral or simplicial
complex.

The intersection of the level sets of k functions is generically a
(n — k)-manifold. One approach to compute it is to decompose R"”
into simplices and take the union of the intersection of k hyper-
planes within each simplex [Allgower and Schmidt 1985; Boissonnat
et al. 2023; Reia et al. 2025]. While efficient, this method can only
achieve linear accuracy within each simplex. Alternatively, one may
iteratively apply the method for computing the simplicial level set
of a scalar function over a simplicial domain [Min 2003; Weigle
and Banks 1996]. Starting from the level set of the first function,
this approach iteratively computes the intersection of the first i
functions, for i = 2,..., k, by sampling the i-th function and com-
puting its simplicial level set on the intersection of the previous
(i — 1) functions. The iterative approach achieves higher accuracy
as it evaluates functions at additional samples created by repeated
intersections. However, this comes at the cost of a larger number of
simplices and lower simplex quality with increasing k. Our method
takes the iterative approach but uses a different method to compute
the level set of the first function in R?, leveraging its unique proper-
ties to lower the number of triangles on the final 2-manifold while
improving their quality.

Efficient deployment of grid-based discretization requires a grid
that adapts its resolution to the geometry and topology of the level
set. While adaptive grid generation has been well-studied for dis-
cretizing level sets in low dimensions (2 and 3), relatively few meth-
ods are designed for discretizing the intersections of level sets. Most
of these methods are either specialized to low-degree polynomials
[Dupont et al. 2007; Mourrain et al. 2005; Schomer and Wolpert
2006] or require interval analysis [Allgower and Georg 1989; Bois-
sonnat and Wintraecken 2022; Diatta et al. 2019], making them
unsuited for general functions (e.g., not in analytical form). The
recent method of [Ju et al. 2024], based on iterative refinement of
a simplicial grid, is the only method we know that can be applied
to general functions in any dimension. We build on it to design an
adaptive grid generation scheme that is tailored to our computation
of the intersection of two 4D level sets.

4 Theoretical foundation

Before diving into our method over the next few sections, we first
discuss the theoretical insights that guide our method. Like many
mesh-based methods, we obtain the sweep boundary by computing
and trimming the envelope. To make the process general and robust,
we make two observations of an envelope in R™:

(1) The lifted envelope, whose projection is the envelope, lies at
the intersection of the zero-level sets of two implicit functions
in R™1 (Section 4.1).

(2) The winding number of a properly oriented envelope com-
pletely determines the subset of the envelope that forms the
sweep boundary (Section 4.2).

The first observation allows the lifted envelope (and in turn, the
envelope) to be robustly discretized by iso-surfacing. The second
observation enables simple and robust trimming of the envelope
by leveraging existing tools for computing mesh arrangement and
winding numbers. Both observations apply to a generalized sweep
in any dimension, which we shall detail next.

Our discussion assumes that the sweep function f : R**! — R is
generic (i.e., in general position). Specifically, recall that s a regular

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

248:6 « Ju,Y.etal.

value of a differentiable scalar function h if the s-level set of h avoids
the critical points of h. We ask that 0 is a regular value of (i) f, (ii)
the time derivative function f”, (iii) f’ restricted to the zero-level
set of f, and (iv) each of (i,ii,iii) restricted to the hyperplanes at ¢ = 0
and t = 1. While conditions (iii) imply that the zero-level sets of
f and f” are both n-manifolds, (iii) ensures that their intersection
(i.e., the contour) is an (n — 1)-manifold, and (iv) further implies
that the union of the contour and caps (i.e., the lifted envelope) is an
(n — 1)-manifold. Furthermore, we assume that the lifted envelope
has a generic projection (i.e., the envelope), whose self-intersections
and singularities (see Section 2.3) have dimension n — 2.

4.1 Implicit representation of lifted envelopes

As reviewed in Section 2, the lifted envelope in R™! consists of
three parts, the contour, the bottom cap and the top cap. Each part is
the intersection of the sweep set (i.e., the zero-level set of the sweep
function f(x, t)) and some geometry implicitly defined by the time
t and the time derivative function f”(x, t). Specifically,

o The contour lies on the zero-level set of f”(x, t) in the range
0 < t < 1, which we call the contour set.

e The bottom cap lies on the zero-superlevel set of f”(x, ¢) at
t = 0, which we call the bottom cap set.

e The top cap lies on the zero-sublevel set of f/(x,t) att =1,
which we call the top cap set.

Since f is C?-continuous, and by our genericity assumptions, all
three sets are C'-continuous n-manifolds with boundaries. In ad-
dition, they share common boundaries defined by f/(x,t) = 0 and
t =0 or ¢t = 1, which are (n — 1)-manifolds. Therefore, the union of
the contour set and the two cap sets is a closed, piecewise smooth
n-manifold, which we call the silhouette set (see Figure 7 (a)). Note
that the silhouette (resp. contour, bottom cap, or top cap) set con-
tains the lifted envelope (resp. contour, bottom cap or top cap) of
any sweep function h(x,t) = f(x,t) + ¢ forc € R.

We can replace the piecewise definition of the silhouette set above
by the zero-level set of a single function, which will be more conve-
nient for analysis and computation. To do so, we define a silhouette
function g that extends f’ beyond the time range of [0, 1],

fl(xt), 0<t<1
glx,t) =4 1, t>1 (3)
-1, t<o0

Since g is not continuous at t = 0 and t = 1, we define its zero-
level set as the boundary of (the closure of) its zero-superlevel set.
It is easy to verify that the zero-level set of g coincides with the
silhouette set defined above. This definition also shows that the
silhouette set is orientable, as it partitions R™! into two regions
with different signs of g.

To summarize, the lifted envelope is the intersection of two im-
plicit surfaces in R™1, the zero-level set of the sweep function f
(a.k.a. the sweep set) and the zero-level set of the silhouette function
g (a.k.a. the silhouette set). This is illustrated in Figure 7 (b).

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

Top cap set —

Bottom
cap set

E

b) Silhouette set + sweep set

(c) Oriented envelope (d) Sweep boundary

Fig. 7. (a) The silhouette set of a 2D sweep (Figure 3) consisting of the
contour set (red), the bottom and top cap sets (blue). (b) The lifted envelope
as the intersection of the silhouette set and sweep set (gray). The insert shows
an outward tangent basis associated with a point on the lifted envelope. (c)
The outward-oriented envelope and the winding numbers in each connected
region. (d) The sweep boundary as the subset of the envelope bounding
regions with 0 winding.

4.2 Sweep boundary from winding numbers

We next introduce a combinatorial characterization of the sweep
boundary using the winding numbers of the envelope. The charac-
terization depends on a carefully chosen orientation of the envelope,
which we discuss first.

4.2.1 Orienting the envelope. Consider a point p on the smooth
portion of the (n — 1)-dimensional lifted envelope in R™! (ie.,
p is not on the boundaries shared by the caps and the contour).
An orientation of the lifted envelope at p can be expressed by a
basis of n — 1 tangent vectors, which we denote by 3. Since the
lifted envelope lies simultaneously on the level sets of the sweep
function f and silhouette function g, ¥ is orthogonal to both of their
gradients, denoted by Vf and Vg (if p is on the cap, where g is not
continuous, we direct Vg to point in the positive time direction).
Our genericity assumptions ensure that Vf and Vg are linearly
independent, regardless of whether p is on the contour or a cap,
which implies that {3, Vf, Vg} forms a basis of R"*1. We say that the
tangent basis X is outward if {2, Vf, Vg} forms a positively oriented
basis; that is,
det({Z, V£, Vg}) > 0.

As a special case, consider n = 2. The lifted envelope is a curve in
3D, and a tangent basis X consists of a single tangent vector along
the curve. The tangent vector is outward if it forms a right-handed
basis with V f and Vg, as shown in the insert of Figure 7 (b). In higher
dimensions, the outward rule can be intuitively stated as follows.
Consider the n-dimensional hyperplane T in R”*! that is tangent
to the level set of g (i.e., the silhouette set) at point p and whose
normal points towards the side where g is positive. An outward

Sweep
volume

Oriented
envelope

Fig. 8. Sweeping an annulus along a shorter (left) and longer (right) path,
showing the sweep volumes (top) and the outward-oriented envelopes
(bottom) with winding numbers.

basis ¥ defines an (n — 1)-dimensional hyperplane in T, tangent to
the level set of f (i.e., the sweep set), whose normal points towards
the side where f is positive. This rule will be used to guide our
discrete algorithm (see Section 6).

We can similarly define an outward orientation of the envelope
by projecting the outward tangent bases from the lifted envelope.
We call an envelope point regular if it is away from the singularities
and self-intersections. Our genericity assumptions ensure that most
points of the (n — 1)-dimensional envelope are regular, since the
singularities and self-intersections only have n — 2 dimensions. For
each regular envelope point x, there exists a unique time, tx, such
that {x,ty} is on the lifted envelope. Let 3 be a tangent basis at
{x,tx}, and ¥ its projection into R” by removing the (n + 1)th
coordinate in each basis vector. Then X, is a tangent basis of the
envelope at x. We say that X is outward if % is outward, and the
envelope is outward-oriented if each point is associated with an
outward tangent basis. See Figure 7 (c) for an example of an outward-
oriented envelope.

4.2.2 Defining the sweep boundary. With the orientation of the
envelope defined, we can now introduce our characterization of the
subset of the envelope that is the sweep boundary. Recall that the
winding number of a closed, oriented curve C in the plane around
a point x is the total number of times C travels counterclockwise
around x. The winding number can be generalized to higher di-
mensions based on the topological degree of a map [Outerelo et al.
2009]. Specifically, given a closed and oriented (n — 1)-manifold C in
R”, the winding number of C around a point x is the degree of the
continuous map from Cy, the radial projection of C onto the unit
n-sphere centered at x, to the unit sphere itself. The winding number
is always an integer and is constant for all points in a connected
component of space away from C. Our key observation is that,

THEOREM 4.1. The sweep boundary is the subset of the outward-
oriented envelope that bounds the space with winding number 0.

The proof is given in Appendix A. The key idea is to relate the
winding number to the number of disjoint time intervals during

Lifted Surfacing of Generalized Sweep Volumes « 248:7

Sweep
volume

>
-
\.\\\ 0

S

A
=

X
O
L

—

Envelope
and
winding

YO IO

Fig. 9. 2D sweeps with complex trajectories (letters “h” and “k”) or topolog-
ical changes to the brush (right, from an annulus to a disk).

which a point is inside the brush. We call such intervals layers, as in
layers of brush strokes. We show that the number of layers, like the
winding number, is constant in each connected space away from
the envelope, changes by +1 as a point moves across the envelope,
and the sign is determined by the direction of movement relative
to the outward orientation of the envelope. The winding numbers
and the resulting sweep boundary are illustrated on our running
example in Figure 7 (c,d).

The outward orientation of the envelope is essential for our
winding-number-based characterization of the sweep boundary.
In the two sweeps shown in Figure 8, the envelope contains an
outer curve and an inner curve in both cases, but only the sweep on
the left has a void. In both examples, the zero-winding cells under
the outward orientation correctly identify the sweep boundary. We
demonstrate our characterization on a few more examples in Fig-
ure 9 where the brush either travels along a complex trajectory or
changes topology during sweeping. Such sweeps are challenging
for existing methods that classify envelope points by computing
reverse trajectories and intersecting them with the brush [Erdim
and Ilies 2008, 2010; Ilies and Shapiro 1999; Rossignac et al. 2007].

5 Method overview

The observations in the previous section suggest a two-stage method
for computing a discrete sweep boundary in R”, combining elements
from both volumetric and mesh-based methods:

o Stage 1 (volumetric): Compute the outward-oriented envelope
by computing the lifted envelope in R™"! as the intersection
of two level sets.

o Stage 2 (mesh-based): Compute the arrangement of the pro-
jected envelope in R™ and output the subset bounding cells
with zero winding.

For the case of n = 3, the second stage can be easily implemented
by leveraging existing methods for computing mesh arrangement
and winding numbers, such as [Zhou et al. 2016], with simple post-
processing. While these methods are numerically robust, they may
produce numerous spurious arrangement cells around the envelope

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

248:8 « Ju,Y.etal.

envelope

envelope

Fig. 10. Computing the 2D envelopes by first extracting the iso-surface
(green) of f (right) or g (left) on the same tetrahedral grid and then com-
puting the iso-curve of the other function on the iso-surface.

singularities, where the intersecting triangles are nearly tangent.
We prune cells whose volume is smaller than a threshold. We also
extract the crease curves, where multiple arrangement patches meet,
and crease points at the ends or junctions of crease curves. They
are shown as green curves and red points in all our examples.

Our main algorithmic contribution lies in the first stage. We will
first introduce a grid-based algorithm for discretizing the intersec-
tion of two level sets in 4D, tailored to the lifted envelope (Section
6). We will follow up with a method to generate a grid with adaptive
resolution, in both space and time, through iterative refinement
(Section 7). Our method works for any “black-box” sweep func-
tion f(x, t) (satisfying the genericity assumptions in Section 4) that
provides the value and gradient at a query location x and time ¢.

6 Computing lifted envelopes

We describe an algorithm for computing a lifted envelope in R*
equipped with an outward orientation. Recall that the lifted envelope
is the intersection of the sweep set, which is the zero-level set of
the sweep function f, and the silhouette set, which is the zero-level
set of the silhouette function g (see Figure 7 (b)).

6.1 Motivation

A common approach for discretizing an intersection of two level
sets is to first compute the level set of one function, which produces
a codimension-1 manifold M, and then sample the other function
on M and compute the level set, which produces a codimension-2
manifold [Min 2003; Weigle and Banks 1996]. Our algorithm follows
this two-step approach but differs from existing methods in two
ways, as explained below.

6.1.1 Order of functions. While existing methods make an arbitrary
choice of which function to use in each step, the order of functions
(f — g versus g — f) matters for our problem. As discussed in
Section 2.2, the lifted envelope lies at the “silhouette” of the sweep set
as viewed in the time direction (see Figure 4 (a)). However, discrete
surfaces often give rise to jagged silhouettes [Liu et al. 2023]. This is
demonstrated on our 2D running example in Figure 10 (left), where
we follow f — g and compute M as the sweep set, the iso-surface

of f (using Marching Tetrahedron on a uniform tetrahedral grid).

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

{) oos = Simplex
4 o0~ Ours

0.03

il

02 04 06 08 10

No snapping

Simplex
Ours

With snapping

Simplex marching Ours

Fig. 11. The triangulated envelopes computed by iterative application of
simplex-marching (left) and our method (middle), without (top) and with
(bottom) grid snapping, on the same uniform simplicial grid in 4D. His-
tograms show triangle quality as the normalized area-length ratio.

Observe that its silhouette, or the iso-curve of g on M, is far from
being smooth, and neither is its projection, the envelope.

To extract smoother envelopes, we observe that points on the
lifted envelope tend to avoid the silhouette of the silhouette set. Such
a point {x, t} must satisfy f”/(x,t) = 0, implying that x is a sin-
gularity of the envelope. By our genericity assumptions, envelope
singularities have a lower dimensionality (n — 2) than the envelope
(n — 1). Furthermore, as discussed in Section 2.3, the only type of
singularities that may lie on the sweep boundary (i.e., pinch points)
is even more rare, generically two dimensions lower than the enve-
lope. Guided by the observation, we choose to first compute M as
the silhouette set and then the level set of f restricted to M. This
leads to smoother discretization of the lifted envelope, particularly
the part that projects to the sweep boundary, as demonstrated in
Figure 10 (right).

6.1.2 Mesh element quality. To discretize a zero-level set in R?,
existing methods typically decompose the space into 4D simplices
and extract the discrete iso-(hyper)surface within each simplex.
This results in a collection of 3D simplices (i.e., tetrahedra), which
are then used to compute the triangulated iso-surface of another
function (e.g., by Marching Tetrahedra). However, 4D iso-surfacing
using simplices may create tetrahedra with poor shape quality, such
as those with short edges and small dihedral angles, which in turn
leads to low-quality triangles after 3D iso-surfacing. We demonstrate
this issue on a rigid sweep example (a sphere moving along a spiral)
in Figure 11 (top-left) using a uniform 4-simplex grid. Note that the
mesh produced by 4D and 3D iso-surfacing in this way contains
numerous near-degenerate triangles (see also the triangle quality
histogram on the far right). Such triangles may lead to numerical
issues in downstream tasks, including computing the arrangement.

One way to improve the quality of iso-surface triangles extracted
on a 3D grid is by “snapping” the grid vertices to the iso-surface.

While this approach can eliminate near-degenerate triangles ex-
tracted on a well-shaped tetrahedral grid [Labelle and Shewchuk
2007], it is less effective if the grid tetrahedra have poor shapes
themselves, like those produced by iso-surfacing over 4D simplices.
As shown in Figure 11 (bottom-left), while snapping reduces the
number of low-quality triangles, many degenerate triangles remain.

We will describe a new 4D iso-(hyper)surfacing algorithm that
produces mostly well-shaped tetrahedra. Our algorithm leads to
better-shaped triangles after 3D iso-surfacing and grid snapping, as
shown in Figure 11 (middle).

6.2 Overview

Instead of simplices, we decompose R* into 4D columns, each ex-
truding in the time direction a tetrahedron in a given 3D tetrahedral
grid. The choice is motivated by our observation made above that
the lifted envelope tends to avoid where the silhouette set “folds” in
time (i.e., its own silhouette). As a result, the part of the silhouette
set containing the lifted envelope is more likely to intersect “trans-
versely” with a column, meaning that the intersection is a collection
of 3D tetrahedral cross-sections of the column. As the 3D projection
of such a cross-section is the tetrahedron from which the column is
extruded, and assuming the given tetrahedral grid is well-shaped,
we can obtain mostly well-shaped tetrahedra by using the columns
as the units for 4D iso-surfacing.

Specifically, our algorithm takes in a “3.5D” representation of a
4D grid, which consists of a 3D tetrahedral grid and a sequence of
time stamps at each grid vertex (grid generation will be discussed
in the next section). We proceed in two steps to compute the lifted
envelope:

(1) Marching columns (Section 6.3): For each tetrahedron and the
time stamps at its vertices, compute the discrete zero-level
set of the silhouette function g within the column as a set of
polyhedra (mostly tetrahedra).

(2) Marching polyhedra (Section 6.4): For each polyhedron gener-
ated in the previous step, compute the discrete zero-level set
of the sweep function f as triangles.

To ensure the outward orientation of the lifted envelope, and fol-
lowing the rule stated in Section 4.2, we orient each polyhedron
(resp. triangle) towards the part of the column (resp. polyhedron)
where g (resp. f) is positive.

We illustrate our algorithm in 2D on our running example; see
Figure 12. The input is a uniform triangular grid with uniform
time samples at each grid point. Each column takes the shape of
a prism that extrudes a triangle in time. Column-marching pro-
duces oriented polygons in each column that collectively form a
consistently oriented polygonal surface in 3D, approximating the
silhouette set (see (a)). Note that the majority of polygons are trian-
gles (colored green/gray on the front/back sides) whose projections
in 2D are grid triangles, with only a few multi-sided polygons (col-
ored red on both sides) where the silhouette set “folds” and hence
intersects the columns non-transversely. Polyhedron-marching (or
rather, polygon-marching in 2D) on this polygonal surface produces
a closed polyline that approximates the lifted envelope (see (b)). Note
that the lifted envelope largely avoids the multi-sided polygons.

Lifted Surfacing of Generalized Sweep Volumes « 248:9

time

(a) Column-marching

(b) Polyhedron-marching

Fig. 12. Computing the lifted envelope of a 2D sweep. (a): The silhouette
set (a surface in 3D), consisting of triangles (green/gray on the front/back)
and multi-sided polygons (red/blue), computed by marching 3D columns
extruded from 2D triangles on a grid. One column (yellow) is highlighted,
showing the time stamps (dark/light balls for negative/positive g) and the
extracted silhouette polygons. (b): The lifted envelope (black curve) com-
puted by marching the silhouette set polygons.

6.3 Marching columns

To extract the polyhedral iso-surface of g in the 4D column of a
tetrahedron s, we visit elements of s at increasing dimensionality and
produce polyhedral elements at the corresponding dimensionality.
To avoid ambiguity, we shall call elements of s t-vertices, t-edges,
and t-faces, and polyhedral elements p-vertices, p-edges, and p-faces.
We shall refer to the extrusion of a t-vertex, t-edge, and t-face in
time as a timeline, time-quad, and time-prism. We assume that s
is positively oriented; that is, each t-face is oriented towards the
remaining t-vertex. We proceed in the following steps.

(1) For each t-vertex x, create p-vertices at the intersections of
the silhouette set with the timeline of x. This is done by
evaluating f”(x, t) at the time stamps of x and computing
the zero-crossing times between successive time stamps with
opposite signs by linear interpolation. Recall that g extends
f’(x,t) by =1 for all t < 0 and 1 for all ¢ > 0 (Equation 3).
Accordingly, we add a zero-crossing time at 0 if f’(x,0) > 0
and at 1if f’(x,1) < 0 (see Figure 13 (a)). As such, there
are always an odd number of zero-crossings on the timeline.
We create one p-vertex {x, t} for each zero-crossing time ¢.
Intuitively, these p-vertices divide the timeline of x into time
intervals with alternating signs of g.

(2) For each directed t-edge {x,y}, connect the p-vertices on
the timelines of x and y into directed p-edges. Since each
timeline has an odd number of p-vertices, their total number is
even. We sort the p-vertices by their time values and connect
every consecutive pair into a p-edge. Intuitively, these p-
edges partition the time-quad of {x, y} into regions, such that
each region connects overlapping time intervals on the two
timelines with the same sign of g (see Figure 13 (b)). We say a
region is positive (resp. negative) if it connects positive (resp.
negative) time intervals. We direct each p-edge so that the
region on its left is positive when the time-quad is drawn on
the left of the directed edge {x, y}.

(3) For each oriented t-face {x, y, z}, form directed cycles from
the directed p-edges on the time-quads of t-edges {x,y},

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

248:10 « Ju, Y.etal.

- f=»

Lo, m

X
(b) Processing an edge

(a) Processing a vertex

Fig. 13. Processing a t-vertex (a) and a t-edge (b) in column-marching. Light
(resp. dark) dots, segments, and polygons are positive (resp. negative) time
samples, timeline intervals, and time-quad regions. Red dots and arrows are
p-vertices and directed p-edges.

—

(c)

Fig. 14. Examples of processing a t-triangle in column-marching. Red dots
and arrows are p-vertices and p-edges obtained by vertex and edge process-
ing (see Figure 13). A p-face may be triangular (green/gray on the front/back)
or multi-sided (red/blue on the front/back). The cycle made up of two iden-
tical p-edges with opposite directions in (b) does not yield a p-face.

{y,z}, and {z,x}. Each cycle with three or more p-edges
becomes a p-face (see Figure 14). Non-triangular p-faces
arise when the silhouette set intersects the column non-
transversely (e.g., Figure 14 (b,c)). The directions of the p-
edges ensure that the p-faces are oriented towards the space
in the time-prism of {x, y, z} where g is positive.

(4) Identify connected components of p-faces in the time-prisms
of all t-faces of s. Each connected component containing three
or more p-faces becomes a polyhedron.

The column-marching procedure guarantees that the output poly-
hedral mesh is topologically manifold at the polyhedral faces (i.e.,
p-faces), in the sense that each p-face a is incident to exactly two
polyhedra unless a is at the domain boundary. These two polyhedra
correspond to the two tetrahedra in the input grid sharing a t-face
b whose time-prism contains a, unless b is on the boundary of the
tetrahedral grid. While a polyhedron may be geometrically self-
intersecting (e.g., the spiral-like p-face in Figure 14 (c)), this poses

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

Fig. 15. Connecting zero-crossings (red dots) on directed edges (black ar-
rows) of a polyhedral face into directed segments (red arrows) during polyhe-
dral marching, showing two opposite sign configurations at the polyhedral
vertices (light or dark gray dots). Each directed segment starts at a —+
zero-crossing and ends at a +— zero-crossing.

no problem to our method as all self-intersections on the envelope
will be eventually resolved by computing the arrangement.

6.4 Marching polyhedra

To extract the triangulated iso-surface of f inside a polyhedron p,
we follow the standard tracing-based approach while taking care to
orient the resulting triangles towards the space in the polyhedron
where f is positive.

First, we compute a zero-crossing of f on each edge of p (i.e., a
p-edge). To improve surface smoothness, we approximate f along a
p-edge by cubic Hermite interpolation of the values and gradients
of f at the p-vertices, and then locate its root using Halley’s method.
Next, zero-crossings on each oriented p-face are connected into
direct segments. Specifically, given a directed p-edge {a, b} with a
zero-crossing, we label the zero-crossing as —+ (resp. +-) if f(a) <
0 (resp. > 0). We trace the ordered p-edges bounding the p-face
and form a segment from each —+ zero-crossing to the next +—
zero-crossing (see two examples in Figure 15). Then, the directed
segments on all p-faces of p are connected into directed cycles, which
are triangulated if the cycle has more than three segments. Finally,
the triangles are projected to 3D by dropping the 4th coordinate
from each zero-crossing.

The polyhedra generated by column-marching, particularly those
around the lifted envelope, are mostly tetrahedra identical to those
in the input grid. Polyhedral marching in these tetrahedra reduces
to the standard Marching Tetrahedra. We use grid-snapping [Labelle
and Shewchuk 2007] (with snapping threshold 0.1 of the edge length)
to remove near-degenerate triangles and improve overall triangle
quality, as shown in Figure 11 (middle).

7 Adaptive grid generation

The surfacing algorithm described in the previous section relies on
an input grid that samples both space and time. Due to the high
dimensionality, uniform sampling could easily lead to an excessive
grid size that is expensive to store or process. To make our method
practically useful, it is important to be able to adapt the sampling
density and only use more samples where we need them; that is,
around the lifted envelope in R*, and particularly its subset that
projects to the sweep boundary in R3. In addition, the grid should

contain well-shaped tetrahedra around the sweep boundary, so that
surfacing produces well-shaped triangles.

We describe an adaptive grid generation algorithm that meets
these demands. Our algorithm heavily borrows from the work by
[Ju et al. 2024], which employs iterative refinement to create an
adaptive, simplicial grid with well-shaped simplices for the purpose
of discretizing the intersection of multiple implicit surfaces. We
tailor their algorithm to work with our 3.5D grid representation and
the two-step surfacing algorithm.

7.1 lterative refinement

The grid is generated in a coarse-to-fine manner. Starting from a
coarse, initial grid that consists of a uniform tetrahedral mesh and
uniform time stamps at each vertex, we refine the grid both spatially
and temporally. We adopt the longest-edge bisection approach for
spatial refinement [Plaza and Rivara 2003; Rivara 1991]. Specifically,
given a tetrahedron whose longest edge is {x, y}, we insert a new
vertex z at the midpoint of {x, y}, which splits every tetrahedron
incident to the edge into two smaller tetrahedra. The time stamps at
z are defined as the union of those on x and y. Similarly, for temporal
refinement, we split a time interval between two time stamps at a
vertex by inserting a new time stamp at the middle of the interval.

Spatial and temporal refinements are invoked iteratively. We
prioritize temporal refinement, whenever possible, because the time
samples take less storage and their addition does not affect the
tetrahedral mesh structure. Entities that need to be refined are kept
in two queues, a spatial queue of tetrahedra and a temporal queue
of time intervals. To yield good tetrahedral quality, we follow [Ju
et al. 2024] and sort all tetrahedra in the spatial queue by descending
lengths of their longest edges. Similarly, intervals in the temporal
queue are sorted by descending lengths.

At each iteration, the algorithm pops an interval from the tempo-
ral queue, if it is not empty, or a tetrahedron from the spatial queue
otherwise, and performs a temporal or spatial refinement. Tetrahe-
dra affected by the refinement, such as the newly created tetrahedra
in spatial refinement and those incident to the vertex where a time
interval is refined, are then checked by a set of refinement criteria,
to be explained below. The criteria decide if a tetrahedron, or a time
interval at one of its vertices, should be refined, and the refinable
entity is added to the corresponding queue. The algorithm finishes
when both queues are empty or some termination condition is met.
In our implementation, we stop processing the temporary (resp.
spatial) queue if the longest interval (resp. edge length) in the queue
is smaller than a threshold egjye (resp. €space)-

7.2 Refinement criteria

Given a tetrahedron s, we need to decide if s or the time intervals
at its vertices need to be refined. As our goal is to prioritize samples
around the part of the lifted envelope that projects to the sweep
boundary, our criteria consist of the following ordered list of checks
and actions:

(1) Is s inside the sweep volume? If so, no refinement is needed.
Otherwise,

(2) Does the 4D column of s intersect the lifted envelope? If not,
no refinement is needed. Otherwise,

Lifted Surfacing of Generalized Sweep Volumes « 248:11

our adaptive grid

% 43D tets: 164,661
. #istamps: 738,782

no error check (4)

~ #3D tets: 27,705
#stamps: 118,597 |

1 #3D tets: 202,794
Hstamps: 963,930

no insideness check (1)

uniform grid: 3374

7| #3D tets: 163,840
5 stamps: 1,185,921

Fig. 16. Grid refinement using our method (top), without the approximation
error check (2nd row), without the insideness check (3rd row), and using
uniform refinement (bottom), showing the cross-sectional view of the refined
grids (left) and the resulting envelopes (before computing the arrangement)
in cut-away (middle) and full (right) views. On the left, grid points are
colored by the number of time stamps (red means more).

(3) Can the silhouette set in the 4D column of s be well approxi-
mated by column-marching, up to some error threshold eg;?
If not, s is refined spatially or temporally depending on the
dimension that contributes the most error. Otherwise,

(4) Can the envelope in s be well approximated by polyhedron-
marching and 3D projection, up to some error threshold €eny?
If not, s is refined spatially.

The first two checks determine if s contains a part of the sweep
boundary, the subset of the envelope that does not lie inside the
sweep volume. The last two checks ensure that the output of the
surfacing algorithm - the discrete silhouette set and lifted envelope
- in the column of s has sufficient accuracy. These checks are imple-
mented using the zero-crossing tests and error bounds developed
in [Ju et al. 2024] for simplices, utilizing a simplicial decomposition
of the column of s. The implementation details are in Appendix B.

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

248:12 « Ju,Y.etal.

As an example, the refined grid for the rolling-ball sweep in Figure
6 is shown in a cross-sectional view in Figure 16 (top left). Note that
the grid is more refined around the sweep boundary, both spatially
and temporally (indicated by colors at the spatial grid points, which
correspond to the number of time stamps). Grid points with more
time stamps are located where different parts of the envelope come
into close contact; this is where the silhouette set intersects more
frequently with the timelines, and thus more temporal samples are
needed (by our second check).

As an ablation experiment, we compare our method with sev-
eral variations in Figure 16 (second to fourth rows). Removing the
last check (on the envelope approximation error) leads to under-
refinement around the envelope, and in turn a less smooth surface.
On the other hand, removing the first check (on insideness with
respect to the sweep volume) results in over-refinement around
interior parts of the envelope that do not lie on the sweep boundary.
Finally, a uniform grid yields a much coarser approximation of the
envelope, even though the grid has a similar number of tetrahedra
as our adaptively refined grid and more temporal samples.

8 Evaluation

We evaluated our method on a variety of 3D sweeps represented by
implicit functions. Our method is implemented in C++. The only
external package we used is the mesh arrangement program by
[Zhou et al. 2016]. All experiments were conducted on a MacBook
Pro with an M4 Pro chip and 48 GB of RAM. Code and data are
available at https://github.com/Jurwen/Swept-Volume.

8.1 Parameters

Our grid generation algorithm is controlled by several parameters,
including the initial spatial-temporal grid, the minimum edge length
€space and time interval €jjme to decide when to stop processing the
spatial and temporal queues, and the thresholds used in the refine-
ment criteria (€ and €eny). We adopt a uniform tetrahedral mesh
created by decomposing a 4% cubical grid using Kuhn’s subdivision,
where each grid point starts with 5 uniformly spaced time samples
(and hence a total of 5* time samples). Surprisingly, this coarse ini-
tial grid is sufficient for all of our examples. Assuming the lifted
sweep volume fits in a 4D unit cube, we fix ejme = 277 and adapts
Espace to the accuracy goal by setting it to be 0.05 * €eny.

The quality of the computed sweep boundary is mainly deter-
mined by &g and €eny, which respectively control the accuracy of
approximating the silhouette set in R* and the envelope in R®. To
obtain more accurate results, both parameters need to be sufficiently
small. A large € leads to a poor approximation of the silhouette
set. This may cause the level set computed on the silhouette set
to deviate significantly from the lifted envelope. Such deviation
manifests as artifacts on the surface, which cannot be resolved by
lowering €eny and often lead to over-refinement, as highlighted in
Figure 17 (top-right). On the other hand, a large €eny produces a
coarse approximation of the envelope, which cannot be improved
by lowering €, as highlighted in Figure 17 (bottom-left). As smaller
thresholds naturally lead to longer running times and larger output
sizes, these two parameters may vary case-by-case depending on

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

€enp = 0.0025

€eny = 0.0003

€q = 0.025

=0.003

€sil

Fig. 17. Sweep boundaries (Figure 2) computed using different combinations
of grid refinement parameters (€551 and €eny). Boxes highlight over-refined
(red) and under-refined (blue) areas.

the need for accuracy versus speed. We use € € [0.001, 0.005] and
€env € [0.0001,0.0005] in our examples.

8.2 Comparisons and results

We compare our method with the recent method of Sellan et al.
[2021], which works on rigid sweeps (Equation 1) where the brush
is defined by a mesh SDF (computed by libigl [Jacobson et al. 2018]).
Sellan’s method uses root-finding for generating smooth surfaces
and adopts a continuation technique to efficiently trace the surface
on a grid. However, as a volumetric method, it produces blurred
creases and artifacts around closed-by surfaces, as shown in Figures
2 (c) and 6 (c). At a comparable output mesh complexity, our method
produces sharp creases (see inserts in Figure 2 (b)) and can resolve
extremely close surfaces (see inserts in Figure 6 (b)). Increasing the
grid resolution in Sellan’s method reduces, but does not eliminate,
the rounded features and artifacts, while significantly increasing
the output mesh size and running time (Figures 2 (d) and 6 (d)).

A key advantage of our method is that it applies to any general-
ized sweep where the brush may undergo morphological and even
topological changes. To demonstrate the generality, we start with
simple sweeps that morph between a torus and a ball, as in Figure
18, or between one and two balls, as in Figure 19. Observe that the
computed sweep boundaries are rich with voids and sharp creases
(e.g., the inserts in Figure 18 top). A more interesting morph, be-
tween a genus-5 cube and a genus-3 tetrahedron (both as quartic
polynomials [Plantinga and Vegter 2007]), is shown in Figure 20.
The sweep boundary has a complex interior structure, as seen in
the transparent and cut-away views. Besides morphing, we can
change the topology of the brush by offsetting its surface during
sweeping. This is demonstrated in the spiraling and shrinking Fer-
tility model in Figure 1, where the brush genus reduces from 4 to

https://github.com/Jurwen/Swept-Volume

#v: 76,465
#1t: 154,146
9.3 sec

#v: 179,490
#t: 363,026

Lifted Surfacing of Generalized Sweep Volumes « 248:13

Fig. 18. Sweep boundaries of a torus morphing to a ball (top) and of a brush morphs back and forth between a torus and a ball (bottom) along spatial curves.
The boundaries and cut-away views are shown both with and without marking the feature curves. The inserts zoom in on two sharp corners.

[}
{J #v: 79,721

- #t: 159,838
12.5 sec

Sweep Boundary

Fig. 19. A sweep that splits and merges.

0, and in the rolling and expanding wire ball in Figure 21, where
the genus changes from 41 to 29. Observe that the computed sweep
boundaries, equipped with sharp creases, exhibit complex geometry
and topology (the rolling-ball sweep has 110 cavities).

Another example of a generalized sweep is the composition of
multiple sweep functions using operators such as (soft) min and max,
effectively performing boolean operations on their sweep volumes.
We show a few sweeps defined in this way in Figure 22, inspired by
a similar example in [Marschner et al. 2023]. Each sweep is defined
by a soft-min (i.e., union) of two rigid sweeps (sweeping a sphere
and a star). Observe that our method produces sharp intersections
between the two rigid sweeps as creases, in addition to the sharp
features on each component rigid sweep.

8.3 Performance

Our method takes between seconds to minutes for the examples
shown in this paper (see notes in the figures). The runtime is domi-
nated by grid generation, where the main factors are the time for
each evaluation of the sweep function (and its gradient) and the

geometric complexity of the sweep boundary. In addition, more
stringent (lower) thresholds in the grid refinement criteria lead to
more refinement and hence longer runtime. Figure 23 (left) plots
the runtime of various steps of our algorithm as a function of the
decreasing €eny on the sweep in Figure 2. Observe that the timing
for all steps exhibits a polynomial increase, which correlates with
the growth in the number of geometric elements being generated,
as plotted in Figure 23 (right).

9 Conclusion and discussions

We presented a new method for computing sweep volumes in 3D.
Motivated by a novel characterization of the sweep boundary, our
method combines both volumetric and mesh-based approaches to
produce watertight, intersection-free surfaces that better approxi-
mate the geometric and topological features of the sweep boundary
than existing methods. In addition, our method extends the scope
of current methods to sweeps with changing shape and topology.
Our method has several limitations. First, our method does not
guarantee to recover the correct topology of the sweep boundary,
nor can we establish a geometric error bound. This is due in part to
the top-down grid refinement algorithm, which may fail to suf-
ficiently refine in some regions, for example, where the sweep
function exhibits significant variations. Furthermore, our mesh-
ing algorithm may produce large errors near the singularities of the
envelope (even though they are rare on the sweep boundary). Better
grid refinement may be achieved by using higher-order local approx-
imations in the refinement criteria, while explicitly modeling the
envelope singularities could further improve the meshing accuracy.
Second, computing the arrangement of the envelope surface explic-
itly as meshes can become time-consuming for complex sweeps. As
the envelope is defined and computed implicitly in our method (as
intersections of 4D level sets), utilizing implicit arrangement meth-
ods [Du et al. 2022] is a natural step towards improving scalability.

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

248:14 + Ju,Y.etal

#v: 957,302

_ . #t: 1,934,076
152.6 sec

Fig. 20. Top-left: A genus-5 cube morphed into a genus-3 tetrahedron along
the same zig-zag path as Figure 19. Rest: The time-colored sweep boundary
with sharp creases (top-right), in transparency (bottom-left), and a cut-away
view (bottom-right).

Doing so will also maintain an implicit representation throughout
our method, making our output ready for applications like CSG and
offset. Finally, we will explore further generalization of our method,
for example, to piecewise smooth implicit functions (e.g., a CSG
shape with sharp edges) and sweeping in a multi-parameter domain
(e.g., over a surface) instead of a single parameter (time).

Acknowledgments

This work is supported by NSF grant HCC-2401224 and a gift from
Adobe Research.

References

Karim Abdel-Malek, Jingzhou Yang, and Denis Blackmore. 2001. On swept volume
formulations: implicit surfaces. Computer-Aided Design 33, 1 (2001), 113-121.

Karim Abdel-Malek, Jingzhou Yang, Denis Blackmore, and Ken Joy. 2006. Swept volumes:
fundation, perspectives, and applications. International Journal of Shape Modeling
12, 01 (2006), 87-127.

Karim Abdel-Malek and Harn-Jou Yeh. 1997. Geometric representation of the swept
volume using Jacobian rank-deficiency conditions. Computer-Aided Design 29, 6
(1997), 457-468.

Steven Abrams and Peter K Allen. 1995. Swept volumes and their use in viewpoint
computation in robot work-cells. In Proceedings. IEEE International Symposium on
Assembly and Task Planning. IEEE, 188-193.

Bharat Adsul, Jinesh Machchhar, and Milind Sohoni. 2014. Local and global analysis of
parametric solid sweeps. Computer Aided Geometric Design 31, 6 (2014), 294-316.

Bharat Adsul, Jinesh Machchhar, and Milind Sohoni. 2015. A computational frame-
work for boundary representation of solid sweeps. Computer-Aided Design and
Applications 12, 2 (2015), 181-191.

Eugene L. Allgower and Kurt Georg. 1989. Estimates for piecewise linear approxima-
tions of implicitly defined manifolds. Applied Mathematics Letters 2 (1989), 111-115.
https://api.semanticscholar.org/CorpusID:123564143

Eugene L Allgower and Phillip H Schmidt. 1985. An algorithm for piecewise-linear
approximation of an implicitly defined manifold. SIAM journal on numerical analysis
22, 2 (1985), 322-346.

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

A

7‘\..\’.)~
"\gv““;k’”

_

Fig. 21. Top: A wire-like ball rolls forward while offsetting, changing its
genus from 41 to 29. Bottom: The time-colored sweep boundary and sharp
creases (2nd row), in transparency (3rd row, creases hidden for clarity), and
a cut-away view (bottom row).

Vladimir Igorevich Arnold, GS Wassermann, and RK Thomas. 1986. Catastrophe theory.
Vol. 3. Springer.

John Baxter, Mohammad R Yousefi, Satomi Sugaya, Marco Morales, and Lydia Tapia.
2020. Deep prediction of swept volume geometries: Robots and resolutions. In 2020
IEEE/RSY International Conference on Intelligent Robots and Systems (IROS). IEEE,
6665-6672.

Praveen Bhaniramka, Rephael Wenger, and Roger Crawfis. 2004. Isosurface construc-
tion in any dimension using convex hulls. IEEE Transactions on Visualization and
Computer Graphics 10, 2 (2004), 130-141.

Denis Blackmore and Ming C Leu. 1992. Analysis of swept volume via Lie groups and
differential equations. The International Journal of Robotics Research 11, 6 (1992),
516-537.

Denis Blackmore, Ming C Leu, and Frank Shih. 1994. Analysis and modelling of
deformed swept volumes. Computer-Aided Design 26, 4 (1994), 315-326.

Denis Blackmore, Ming C Leu, and Liping P Wang. 1997. The sweep-envelope differen-
tial equation algorithm and its application to NC machining verification. Computer-
Aided Design 29, 9 (1997), 629-637.

Denis Blackmore, Roman Samulyak, and Ming C Leu. 1999. Trimming swept volumes.
Computer-Aided Design 31, 3 (1999), 215-223.

Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. 2023. Trac-
ing Isomanifolds in d in Time Polynomial in d using Coxeter-Freudenthal-Kuhn
Triangulations. SIAM J. Comput. 52, 2 (2023), 452-486.

Jean-Daniel Boissonnat and Mathijs Wintraecken. 2022. The Topological Correctness
of PL Approximations of Isomanifolds. Found. Comput. Math. 22, 4 (aug 2022),
967-1012. https://doi.org/10.1007/s10208-021-09520-0

Marcel Campen and Leif Kobbelt. 2010. Polygonal boundary evaluation of minkowski
sums and swept volumes. In Computer Graphics Forum, Vol. 29. Wiley Online Library,
1613-1622.

Antonio Castelo, Lucas Moutinho Bueno, and Marcio Gameiro. 2022. A combinatorial
marching hypercubes algorithm. Computers & Graphics 102 (2022), 67-77.

Hao-Tien Lewis Chiang, Aleksandra Faust, Satomi Sugaya, and Lydia Tapia. 2020. Fast
swept volume estimation with deep learning. In Algorithmic Foundations of Robotics
XII: Proceedings of the 13th Workshop on the Algorithmic Foundations of Robotics 13.

https://api.semanticscholar.org/CorpusID:123564143
https://doi.org/10.1007/s10208-021-09520-0

#v: 268,286
#1: 543,622
83.1sec

#v: 289,278 #v: 237,633
#1:586,578 #1: 481,900
63.5 sec 58.6 sec

Fig. 22. Letter-like shapes created by soft-min (union) of two sweep func-
tions (rigid sweep of a tube and a sphere), inspired by a similar example in
[Marschner et al. 2023].

time(sec) # Elements
[Grid generation
|7 Column-marching
30| . Polyhedron-marching

1x107 [Grid tets

D Polyhedra (by column-marching)
[Non-tet polyhedra

. Triangles (by polyhedron-marching)

8x 109

6|
W Arrangement 6x10

4x109 . Triangles (on sweep boundary)

2x10°

0.0025 0.002 0.0015 0.001 0.00056.0001 0.0025 0.002 0.0015 0.001 0.00050.0001
€env €env

Fig. 23. Timing of each step (left) and the number of geometric elements
(right) on the sweep in Figure 2 as €.y decreases. An algebraic torus is used
instead of a mesh SDF for faster evaluation.

Springer, 52-68.

Jason Conkey and Kenneth I Joy. 2000. Using isosurface methods for visualizing the
envelope of a swept trivariate solid. In Proceedings the Eighth Pacific Conference on
Computer Graphics and Applications. IEEE, 272-280.

Bruno Rodrigues De Araujo, Daniel S Lopes, Pauline Jepp, Joaquim A Jorge, and Brian
Wyvill. 2015. A survey on implicit surface polygonization. ACM Computing Surveys
(CSUR) 47, 4 (2015), 1-39.

Sény Diatta, Guillaume Moroz, and Marc Pouget. 2019. Reliable Computation of the
Singularities of the Projection in R3 of a Generic Surface of R4. In MACIS 2019 -
Mathematical Aspects of Computer and Information Sciences. Gebze-Istanbul, Turkey.
https://inria.hal.science/hal-02406758

Xingyi Du, Qingnan Zhou, Nathan A. Carr, and Tao Ju. 2022. Robust computation
of implicit surface networks for piecewise linear functions. ACM Transactions
on Graphics (TOG) 41 (2022), 1 — 16. https://api.semanticscholar.org/CorpusID:
249917144

Laurent Dupont, Michael Hemmer, Sylvain Petitjean, and Elmar Schomer. 2007. Com-
plete, exact and efficient implementation for computing the adjacency graph of an
arrangement of quadrics. In Proceedings of the 15th Annual European Conference on
Algorithms (Eilat, Israel) (ESA’07). Springer-Verlag, Berlin, Heidelberg, 633-644.

Lifted Surfacing of Generalized Sweep Volumes « 248:15

Hiiseyin Erdim and Horea T Ilies. 2007. Detecting and quantifying envelope singularities
in the plane. Computer-Aided Design 39, 10 (2007), 829-840.

Hiseyin Erdim and Horea T Ilies. 2008. Classifying points for sweeping solids.
Computer-Aided Design 40, 9 (2008), 987-998.

Hiiseyin Erdim and Horea T Ilies. 2010. A comparison of sampling strategies for
computing general sweeps. Computer-Aided Design 42, 8 (2010), 657-669.

Jesse C Himmelstein, Etienne Ferre, and Jean-Paul Laumond. 2009. Swept volume
approximation of polygon soups. IEEE Transactions on Automation Science and
Engineering 7, 1 (2009), 177-183.

Horea T Ilies and Vadim Shapiro. 1999. The dual of sweep. Computer-Aided Design 31,
3 (1999), 185-201.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of
hermite data. In Proceedings of the 29th annual conference on Computer graphics and
interactive techniques. 339-346.

Yiwen Ju, Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju. 2024. Adaptive grid
generation for discretizing implicit complexes. ACM Trans. Graph. 43, 4, Article 82
(July 2024), 17 pages. https://doi.org/10.1145/3658215

J Kieffer and FL Litvin. 1991. Swept volume determination and interference detection
for moving 3-D solids. (1991).

Young J Kim, Gokul Varadhan, Ming C Lin, and Dinesh Manocha. 2003. Fast swept
volume approximation of complex polyhedral models. In Proceedings of the eighth
ACM symposium on Solid modeling and applications. 11-22.

Francois Labelle and Jonathan Richard Shewchuk. 2007. Isosurface stuffing: fast tetra-
hedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3 (jul 2007), 57—es.
https://doi.org/10.1145/1276377.1276448

Chenxi Liu, Pierre Bénard, Aaron Hertzmann, and Shayan Hoshyari. 2023. Contesse:
Accurate occluding contours for subdivision surfaces. ACM Transactions on Graphics
42,1 (2023), 1-16.

Jinesh Machchhar, Denys Plakhotnik, and Gershon Elber. 2017. Precise algebraic-
based swept volumes for arbitrary free-form shaped tools towards multi-axis CNC
machining verification. Computer-Aided Design 90 (2017), 48-58.

Claudia Madrigal and Ken Joy. 1999. Generating the envelope of a swept trivariate
solid. (1999).

Zoé Marschner, Silvia Sellan, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023. Constructive
solid geometry on neural signed distance fields. In SSIGGRAPH Asia 2023 conference
papers. 1-12.

Ralph R Martin and PC Stephenson. 1990. Sweeping of three-dimensional objects.
Computer-Aided Design 22, 4 (1990), 223-234.

Chohong Min. 2003. Simplicial isosurfacing in arbitrary dimension and codimension.
J. Comput. Phys. 190, 1 (2003), 295-310.

Bernard Mourrain, Jean-Pierre Técourt, and Monique Teillaud. 2005. On the compu-
tation of an arrangement of quadrics in 3d. Computational Geometry 30, 2 (2005),
145-164.

Enrique Outerelo et al. 2009. Mapping degree theory. Vol. 108. American Mathematical
Soc.

Martin Peternell, Helmut Pottmann, Tibor Steiner, and Hongkai Zhao. 2005. Swept
volumes. Computer-Aided Design and Applications 2, 5 (2005), 599-608.

Simon Plantinga and Gert Vegter. 2007. Isotopic meshing of implicit surfaces. The
Visual Computer 23, 1 (2007), 45-58.

Angel Plaza and Maria-Cecilia Rivara. 2003. Mesh Refinement Based on the 8-Tetrahedra
Longest- Edge Partition.. In Proceedings of the 12th International Meshing Roundtable.
67-78.

Helmut Pottmann and Martin Peternell. 2000. Envelopes-computational theory and
applications. In Spring conference on computer graphics. 3-23.

Margot Rabl, Bert Jiittler, and Laureano Gonzalez-Vega. 2008. Exact envelope compu-
tation for moving surfaces with quadratic support functions. Advances in Robot
Kinematics: Analysis and Design (2008), 283-290.

Lucas Martinelli Reia, Marcio Gameiro, Tomas Bueno Moraes Ribeiro, and Antonio
Castelo. 2025. A fast high-dimensional continuation hypercubes algorithm. Com-
puters & Graphics (2025), 104237.

Maria Cecilia Rivara. 1991. Local modification of meshes for adaptive and/or multigrid
finite-element methods. J. Comput. Appl. Math. 36 (1991), 79-89. https://api.
semanticscholar.org/CorpusID:120011902

Jarek Rossignac, Jay J Kim, SC Song, KC Suh, and CB Joung. 2007. Boundary of the
volume swept by a free-form solid in screw motion. Computer-Aided Design 39, 9
(2007), 745-755.

Elmar Schémer and Nicola Wolpert. 2006. An exact and efficient approach for computing
a cell in an arrangement of quadrics. Computational Geometry 33, 1-2 (2006), 65-97.

William J Schroeder, William E Lorensen, and Steve Linthicum. 1994. Implicit modeling
of swept surfaces and volumes. In Proceedings Visualization’94. IEEE, 40-45.

Philipp Schwaha and René Heinzl. 2010. Marching simplices. In AIP conference proceed-
ings, Vol. 1281. American Institute of Physics, 1651-1654.

Silvia Sellan, Noam Aigerman, and Alec Jacobson. 2021. Swept volumes via spacetime
numerical continuation. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1-11.

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

https://inria.hal.science/hal-02406758
https://api.semanticscholar.org/CorpusID:249917144
https://api.semanticscholar.org/CorpusID:249917144
https://doi.org/10.1145/3658215
https://doi.org/10.1145/1276377.1276448
https://api.semanticscholar.org/CorpusID:120011902
https://api.semanticscholar.org/CorpusID:120011902

248:16 + Ju, Y.etal.

Alexei Sourin and A Pasko. 1995. Function representation for sweeping by a moving
solid. In Proceedings of the third ACM symposium on Solid modeling and applications.
383-391.

Andreas von Dziegielewski, Rainer Erbes, and Elmar Schémer. 2010. Conservative
swept volume boundary approximation. In Proceedings of the 14th ACM Symposium
on Solid and Physical Modeling. 171-176.

Andreas Von Dziegielewski, Michael Hemmer, and Elmar Schomer. 2013. High precision
conservative surface mesh generation for swept volumes. IEEE Transactions on
Automation Science and Engineering 12, 1 (2013), 183-191.

WP Wang and KK Wang. 1986. Geometric modeling for swept volume of moving solids.
IEEE Computer graphics and Applications 6, 12 (1986), 8-17.

Chris Weigle and David C Banks. 1996. Complex-valued contour meshing. In Proceedings
of Seventh Annual IEEE Visualization’96. IEEE, 173-180.

Klaus Weinert, Shangjian Du, Patrick Damm, and Marc Stautner. 2004. Swept volume
generation for the simulation of machining processes. International Journal of
Machine Tools and Manufacture 44, 6 (2004), 617-628.

John D Weld and Ming C Leu. 1990. Geometric representation of swept volumes with
application to polyhedral objects. The International Journal of Robotics Research 9, 5
(1990), 105-117.

Hassler Whitney. 1955. On singularities of mappings of Euclidean spaces. I. Mappings
of the plane into the plane. In Hassler Whitney Collected Papers. Springer, 370-406.

Zhiqi Xu, Zhiyang Chen, Xiuzi Ye, and Sanyuan Zhang. 2007. Approximate the swept
volume of revolutions along curved trajectories. In Proceedings of the 2007 ACM
symposium on Solid and physical modeling. 309-314.

Jingzhou Yang and Karim Abdel-Malek. 2005. Approximate swept volumes of NURBS
surfaces or solids. Computer Aided Geometric Design 22, 1 (2005), 1-26.

Xinyu Zhang, Young J Kim, and Dinesh Manocha. 2009. Reliable sweeps. In 2009
SIAM/ACM joint conference on geometric and physical modeling. 373-378.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-
ments for solid geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1-15.

A Proof of Theorem 4.1

We consider a smooth sweep function f(x,¢) : R” x [0,1] —» R
satisfying the genericity conditions in Section 4. We define a layer
at a point x € R" as a continuous range of ¢+ € [0, 1] such that
f(x,t) < 0. We call the number of layers at x its layer count, and
we are interested in characterizing points with layer count 0. The
boundary of the set of all such points is the sweep boundary.

Our first observation is that, as x travels in R", its layer count
changes only when x crosses the envelope. Assuming that x avoids
the singularities and self-intersections of the envelope, the layer
count of x can only change at one of the following “critical” events:

(1) A layer appears or disappears at time 0.

(2) A layer appears or disappears at time 1.

(3) A layer appears or disappears at some time ¢ € (0, 1).

(4) Two layers merge, or one layer splits into two, at some time

t€(0,1).

In the first event, f(x,0) = 0 but f(x,€) > 0 for any sufficiently
small e, implying that f’(x,0) > 0. As a result, {x,0} is on the
bottom cap. Similarly, in the second event, {x, 1} is on the top cap.
In the last two events, the function fi(s) = f(x,s) has a critical
point at s = ¢. In other words, f/(x, t) = 0. Since f(x,t) =0, {x, t}
must be a contour point. In all events, x is the projection of some
point on the lifted envelope, which is the union of the contour,
bottom and top caps, and so x is on the envelope.

We next show that the exact change in the layers at these critical
events depends on the direction of movement and the derivatives
of f at the event location. Consider a regular envelope point x (i.e.,
away from self-intersections and singularities). Since there exists a
unique time ¢ € [0, 1] such that {x, t} is on the lifted envelope, only
one of the critical events above happens at x. Let V4 f(x, t) be the
first n components of the gradient Vf at {x, t}. Note that V f(x, t)
is normal to the envelope at x. Now, consider another point y € R”

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

t=1
+ — +1 h—
X X
(1) Bottom cap (2) Top cap
y— y—
\/ \
+ +
t - t —
\ /
X X

(3) Contour: f" >0 (4) Contour: f" <0

Fig. 24. Change in the layers (red vertical segments) of a moving point y at
different critical events, as y moves past an envelope point x projected from
a point on the bottom cap set (1), top cap set (2), or the contour set (3,4).
Regions with positive (resp. negative) f are colored light blue (resp. red).

that moves past x in some direction v, such that v - V4 f(x,t) < 0.
As illustrated in Figure 24, the change in the layers of y depends on
t and, in some cases, the second-order time derivative f”:

(1) t = 0: a new layer appears at time 0.

(2) t = 1: a new layer appears at time 1.

(3) 0 <t <1land f”(x,t) > 0: a new layer appears at time ¢.

(4) 0 <t < 1land f”(x,t) < 0: two layers merge at time .
Observe that the layer count increments by 1 in the first three cases,
but it decrements by 1 in the last case.

We will show that the outward orientation of the envelope defined
in Section 4.2 has the following property: for any regular envelope
point x projected from the lifted envelope point {x, t}, the outward
normal at x is parallel to =V f(x,#) if 0 < ¢t < 1 and f”'(x,t) <0
(i.e., the last case above), and parallel to V f(x, t) otherwise. With
this property, a point that moves across the regular part of the
envelope from the “outside” to the “inside”, as determined by the
outward normal at the crossing point, always sees its layer count
increased by 1.

To formalize this property, we denote by nr, ng the normalized
gradient of f,g at {x,t}, and 7 = {0, 1} the unit vector along the
positive time axis. Note that ny = 7 if t = 0 or 1, as {x, ¢} lies on the
bottom or top cap sets, and ng = Vf’(x,t)/|Vf’(x,)| otherwise.
As a result, ng -t < Oifand only if 0 < t < 1and Vf'(x,t) - 7 =
f"(x,t) < 0.Let T be an orthonormal tangent basis of the lifted
envelope at {x, t}, % be its projection, which is a tangent basis of the
envelope at x, and nig be the projection of ny (by removing the last
coordinate of nr). Note that ny is parallel to Vx f (x, t). Therefore,
det({Z, ng}) > 0 (resp. < 0) implies that, in R”, the orientation
represented by the tangent basis ¥, is consistent with (resp. opposite
to) the normal vector Vy f(x, t). We can now restate the property
above as:

ProrosITION A.1. IfY is an outward tangent basis, then

sign(det({Z, ng})) = sign(ng - 7)

ProOF. By the definition of outward basis in Section 4.2,
det({Z,ng,ng}) > 0.

If {x, ¢} lies on a cap set (i.e., t = 0 or 1), then ny = 7 = {0, 1}. Since
the matrix {3, ng} is the upper-left block of the matrix {Z, ns, ng},
and by the definition of determinants,

det({Z,7i7}) = det({Z, np,ng}) > 0.

Thus the proposition holds, as ng - 7 = 1 is also positive.
Otherwise, {x, ¢} lies on the contour set, where f”(x, {) = 0 and

hence ny - 7 = 0. Let ny be the projection of ny onto the hyperplane

orthogonal to ns (i.e., the tangent plane of the zero-level set of f),

ng=ng—(ng-ng)*ng.

Observe that n; - T =ng - 7. Since ny and (nf - ng) * ny are linearly

dependent,

det({Z, np, ng}) = det({=,ng,ng}) > 0.
Let n; = n;/|n;|. Note that n; - 7 has the same sign as ng - 7, and
det({Z,ng,ng}) > 0. On the other hand, since ny is orthogonal to

ny, and both are orthogonal to ¥, which itself is an orthonormal
basis, the vectors {2, n £ n;} form a positively oriented orthonormal

basis of R**!, We utilize the property that, for any orthonormal

matrix whose determinant is 1, det(A) = det(D). In our

B
C D
case, A = {3, ng}and D = n; - 7. This implies

sign(det({Z, nr})) = sign(ng - 7) = sign(ng - 7),

which concludes the proof. O

Finally, we relate the layer count to the winding number of the
outward-oriented envelope. The two numbers share several com-
monalities: both are integers; both are constant in any connected
space away from the envelope; both increment or decrement by 1
as a point moves across the envelope, depending on the movement
direction relative to the outward orientation of the envelope; and
both are zero outside of the sweep volume. These commonalities im-
ply that the two numbers have the same absolute value everywhere.
As a result, points with zero layer count are exactly those with zero
winding number. This concludes the proof of Theorem 4.1.

B Implementation of refinement criteria

We detail the implementation of the refinement criteria described in
Section 7.2. We utilize the techniques developed in [Ju et al. 2024]
for checking whether an n-simplex s intersects the zero-level set of
a vector-valued function F : R — RK for k > 1 (or equivalently,
the intersection of the zero-level sets of k scalar functions), denoted
by F~1, and for bounding the error of approximating F~! by linear
interpolation. Specifically, a cubic Bezier simplex F is constructed
by sampling the values and gradients of F at the vertices of s. F is
represented by Bezier ordinates (each is a k-vector) at Bezier control
points located on the vertices, edges, faces, and interior of s. Then
s is considered to intersect F~! if the k-dimensional convex hull
spanned by the Bezier ordinates contains the origin. To bound the
approximation error of of F~! by the zero-level set of the barycentric

Lifted Surfacing of Generalized Sweep Volumes « 248:17

-1
interpolation of values of F at the vertices of s, denoted by F ", the

one-sided Hausdorff distance from F~! to F " is used. This distance
is shown to be upper-bounded by a maximum error evaluated at all
Bezier control points (Equation 14 in [Ju et al. 2024]).

To use these techniques, we decompose the 4D column of a tetra-
hedron s into 4-simplices. These simplices connect the time stamps
at the vertices of s and are constructed using a simple and efficient
routine. After sorting all time stamps in ascending order, we create
the first 4-simplex from the first five time stamps in the sorted list
L. These time stamps include one from each vertex (at time 0) and a
fifth (positive) time stamp at some vertex. We then visit the remain-
der of L in order and, for each newly visited time stamp ¢, build a
4-simplex from ¢ and the highest time stamp at each vertex that has
already been visited. The simplicial decomposition is fast enough
that it can be performed on-the-fly when checking a tetrahedron
for refinement, thus avoiding the potentially large memory cost for
storing these simplices.

We denote the set of 4-simplices constructed above as M. A tetra-
hedral face h of a 4-simplex m € M is said to be horizontal if h
spans time samples from all four vertices of s. By construction, each
4-simplex has exactly two horizontal faces. We call the edge of m
not part of either horizontal face the vertical edge of m. A vertical
edge connects two time stamps at the same vertex.

Given the sweep and silhouette functions f, g, the four checks
in Section 7.2 are implemented by testing zero-crossing and evalu-
ating the error bound using the Bezier simplices of f, g inside the
4-simplices and, in some cases, inside the horizontal tetrahedra. To
avoid sampling the 2nd-order derivatives of f (i.e., the gradient of g)
at the vertices, we construct the Bezier simplex of g by degree-lifting
the derivative of the Bezier simplex of f, which is quadratic, to a
cubic Bezier simplex. The checks are implemented as follows:

(1) s is considered inside the sweep volume if f is negative on
some horizontal face h of some 4-simplex m € M. The latter
is determined by slightly modifying the zero-crossing test in
[Ju et al. 2024]: f is negative on h if all Bezier ordinates in the
cubic Bezier simplex of h are negative.

(2) The column of s is considered to intersect the lifted envelope
if any 4-simplex m € M intersects the intersection of the
zero-level sets of f and g. We call such m a candidate.

(3) We check if the linear approximation error of the zero-level set
of g in any candidate 4-simplex m € M is greater than €. If so,
we compare the maximum error over the Bezier control points
on the vertical edge of m with the smaller of the maximum
errors over the Bezier control points on the two horizontal
faces of m. If the former is greater, a temporal refinement is
needed, and the corresponding time interval of the vertical
edge is pushed into the temporal queue. Otherwise, we push
s into the spatial queue for spatial refinement.

(4) We perform column-marching (Section 6.3) in the column of
s and obtain a set of polyhedra approximating the silhouette
set. We push s into the spatial queue for refinement if there
exists some polyhedron p that intersects with some candidate
4-simplex, and either p is not a tetrahedron or the linear
approximation error of the zero-level set of f in p exceeds
€env after projecting to R3.

ACM Trans. Graph., Vol. 44, No. 6, Article 248. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Defining sweeps
	2.2 Characterizing sweep boundary
	2.3 Singularities

	3 Related Works
	3.1 Computing sweeps
	3.2 Level set intersection in higher dimensions

	4 Theoretical foundation
	4.1 Implicit representation of lifted envelopes
	4.2 Sweep boundary from winding numbers

	5 Method overview
	6 Computing lifted envelopes
	6.1 Motivation
	6.2 Overview
	6.3 Marching columns
	6.4 Marching polyhedra

	7 Adaptive grid generation
	7.1 Iterative refinement
	7.2 Refinement criteria

	8 Evaluation
	8.1 Parameters
	8.2 Comparisons and results
	8.3 Performance

	9 Conclusion and discussions
	Acknowledgments
	References
	A Proof of Theorem 4.1
	B Implementation of refinement criteria

