
Adaptive grid generation for discretizing implicit complexes
YIWEN JU,Washington University in St. Louis, USA
XINGYI DU,Washington University in St. Louis, USA
QINGNAN ZHOU, Adobe Research, USA
NATHAN CARR, Adobe Research, USA
TAO JU,Washington University in St. Louis, USA

Fig. 1. Our method generates simplicial grids (top) that enable adaptive discretization of a variety of implicit shapes defined by vector functions (bottom),
such as arrangements of multiple implicit surfaces (a), CSG shapes (b), non-manifold material interfaces (e), and curve networks (d). The grids are adapted to
the geometric complexity of not only the surface components but also their intersections (shown as wires on top).

We present a method for generating a simplicial (e.g., triangular or tetrahe-
dral) grid to enable adaptive discretization of implicit shapes defined by a
vector function. Such shapes, which we call implicit complexes, are gener-
alizations of implicit surfaces and useful for representing non-smooth and
non-manifold structures. While adaptive grid generation has been exten-
sively studied for polygonizing implicit surfaces, few methods are designed
for implicit complexes. Our method can generate adaptive grids for several
implicit complexes, including arrangements of implicit surfaces, CSG shapes,
material interfaces, and curve networks. Importantly, our method adapts

Authors’ addresses: Yiwen Ju, Washington University in St. Louis, USA, yiwen.ju@
wustl.edu; Xingyi Du, Washington University in St. Louis, USA, du.xingyi@wustl.
edu; Qingnan Zhou, Adobe Research, USA, qzhou@adobe.com; Nathan Carr, Adobe
Research, USA, ncarr@adobe.com; Tao Ju, Washington University in St. Louis, USA,
taoju@wustl.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 0730-0301/2024/7-ART82
https://doi.org/10.1145/3658215

the grid to the geometry of not only the implicit surfaces but also their
lower-dimensional intersections. We demonstrate how our method enables
efficient and detail-preserving discretization of non-trivial implicit shapes.

CCS Concepts: • Computing methodologies→Mesh geometry models.

Additional KeyWords and Phrases: implicit surfaces, grid refinement, surface
networks

ACM Reference Format:
Yiwen Ju, Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju. 2024. Adaptive
grid generation for discretizing implicit complexes. ACM Trans. Graph. 43, 4,
Article 82 (July 2024), 17 pages. https://doi.org/10.1145/3658215

1 INTRODUCTION
Implicit representations are widely used in computer graphics. A
smooth and manifold surface in 3D can be represented as the level
set of a scalar function 𝑓 : R3 → R, also known as an implicit surface.
The implicit surface enjoys a number of benefits, including a simple
definition, easy modification (in both geometry and topology), and
convenience for operations such as offsets and boolean.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

https://doi.org/10.1145/3658215
https://doi.org/10.1145/3658215

82:2 • Ju, Y. et al.

Shapes beyond smooth manifolds can also be represented im-
plicitly, by making use of a vector function 𝑓 : R3 → R𝑚 where
𝑚 > 1. For example, a CSG shape [Requicha and Voelcker 1977], of-
ten used to represent piecewise smooth surfaces, consists of subsets
of multiple implicit surfaces, each can be defined by the level set of a
scalar component of 𝑓 . A non-manifold network of surfaces can be
represented either as the arrangement of multiple implicit surfaces
[Bagley et al. 2016; Guo et al. 2021], or as the interface between
regions where one component of 𝑓 is greater than the rest [Bertram
et al. 2005; Zhang et al. 2008]. A vector function can also define
lower-dimensional shapes, such as spatial curves defined by the
intersection of two implicit surfaces [Burns et al. 2005; Edelsbrun-
ner and Harer 2002; Kohlbrenner et al. 2023]. We refer to a shape
implicitly defined by some vector function as an implicit complex.
Some examples can be found in Figure 1 (bottom).

To be useful for downstream applications, an implicit surface or
complex must be discretized. Many discretization methods, such as
Marching Cubes [Lorensen and Cline 1987] and Marching Tetrahe-
dra [Bloomenthal 1988], operate on a spatial grid consisting of cubic
or simplicial cells (reviewed in Section 2.1). The grid structure plays
a key role in the performance of these methods. While a finer grid
generally leads to higher discretization accuracy, it comes at the
cost of slower grid generation and discretization, a larger memory
footprint, and a larger output size. An ideal grid for discretization
should be adaptive in that the finer grid cells are located only where
higher accuracy is needed. These locations are typically where the
implicit shape has a non-trivial geometry or topology.

While adaptive grid generation has been extensively studied for
polygonizing implicit surfaces, works on implicit complexes have
been scarce (see Section 2.2). A key challenge in the latter is adapting
the grid structure to accurately discretize the intersection of multiple
implicit surfaces. Such intersections form the lower-dimensional
elements in an implicit complex, such as the sharp edges and corners
in a CSG shape or the junction graph in a non-manifold surface
network. Note that the intersection of implicit surfaces may have a
more complex geometry than the surfaces themselves, as shown in
the example of Figure 2 (a). As a result, grids adapted only to the
implicit surfaces could suffer from either insufficient resolution at
their intersections (Figure 2 (b)) or excessive refinement elsewhere
(Figure 2 (c)). Existing methods that can capture such intersections
either are limited to low-degree polynomials [Dupont et al. 2007;
Mourrain et al. 2005; Schömer and Wolpert 2006] or rely on interval
analysis [Allgower and Georg 1989; Boissonnat and Wintraecken
2022], and hence they are not suited for general functions where
tight intervals can be difficult, if not impossible, to obtain.
This paper presents a new method for generating adaptive sim-

plicial grids for discretizing a variety of implicit complexes (such
as those in Figure 1). A key feature of the method is that it adapts
the grid structure to the geometry of both the implicit surfaces
and their intersections. This allows elements at all dimensions in
an implicit complex to be accurately discretized without excessive
refinement of the grid (see Figure 2 (d)). Unlike existing intersection-
aware methods, our method does not require intervals, and it can be
applied to any function whose values and gradients can be queried.
Our main contribution is a set of criteria that decide whether a

simplicial cell needs to be refined, given a particular definition of

Fig. 2. (a): Two views of a plane (blue, implicit surface of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑧

) and a nearly flat surface (yellow, implicit surface of 𝑓 (𝑥, 𝑦, 𝑧) = 0.1 ∗
(𝑥2 + 𝑦3 − 0.005) − 𝑧), whose intersection curve (red) is far from being
flat. (b,c): Discretization on a grid adapted only to the two implicit surfaces
either cannot capture well the intersection curve (b) or over-refines the
surface (c). (d): Discretization on a grid adapted to both the surfaces and
their intersection curve (generated by our method) accurately captures the
curve without over-refinement.

the implicit complex. The core of these criteria are novel tests that
(approximately) check if an 𝑛-simplex contains the intersection of𝑚
implicit surfaces, and if such intersection can be well approximated
by linear interpolation. Our tests can be efficiently and robustly
implemented in any dimension 𝑛 and for any𝑚 ≤ 𝑛, without the
need for interval analysis. These tests become the building blocks
of the refinement criteria for an implicit complex, which include
additional checks to avoid unnecessary refinement along parts of
an implicit surface (or intersection) that does not lie on the complex
(e.g., the trimmed portion of a primitive in CSG).

Our second contribution is a new method for top-down refine-
ment of a simplicial grid, given some refinement criteria. Ourmethod
is a variant of the classic longest edge bisection (LEB) method [Plaza
and Rivara 2003; Rivara 1991], which bisects a simplex at the mid-
point of its longest edge. While LEB generates high quality cells
with smoothly varying sizes, the grid can be overly fine for the
purpose of discretizing a single implicit shape (see Figure 3 (a)). Our
variant produces fewer cells than LEB by allowing cells away from
the implicit shape, which are irrelevant to discretization, to have
worse shapes and hence higher adaptivity (see Figure 3 (b)).

The rest of the paper is organized as follows. After discussing
the previous works in Section 2, we review the implicit represen-
tations in Section 3. The technical discussion starts with our tests
on the implicit surface intersections in Section 4, followed by our
criteria for implicit complexes in Section 5, and it ends with our
refinement algorithm in Section 6. We present our experimental
results in Section 7 and conclude with a discussion in Section 8.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

Adaptive grid generation for discretizing implicit complexes • 82:3

Fig. 3. Refining a triangular grid using the longest edge bisection (LEB)
method (a) and our method (b) for discretizing the tear-drop curve
[de Figueiredo et al. 2006] (red, implicit curve of 𝑓 (𝑥, 𝑦) = 𝑥5 + 𝑥4 − 2𝑦2).
Our method produces much fewer triangles away from the curve, while
maintaining the shape and adaptivity of triangles around the curve (gray).

2 PREVIOUS WORK
There is an extensive literature on discretizing implicit shapes. We
refer the reader to the excellent and comprehensive survey of De
Araújo et al. [2015]. Here we selectively review works that are most
relevant to ours, namely methods that discretize the shape using an
embedded grid and methods to generate such an embedding. Note
that these methods are different from works that produce grids that
conform to (rather than surround) a given surface [Dey and Slatton
2013; Oudot et al. 2010].

2.1 Grid-based discretization
A common approach to discretize an implicit surface is to divide the
domain into cells and approximate the surface locally within each
cell using polygons [Whitney 1957]. Marching Cubes [Lorensen
and Cline 1987] and its many variants adopt uniform cubic cells. The
lack of adaptivity of a cubic grid motivates methods that can work
on an adaptive octree [Ju et al. 2002; Schaefer and Warren 2004;
Varadhan et al. 2004]. Alternatively, adaptivity can be achieved by
using simplicial cells (e.g., tetrahedra in 3D), which can tile space
with varying sizes. Another advantage of simplicial cells is that the
values at the simplex’s vertices can be interpolated by a linear func-
tion. The linearity enables simple and unambiguous discretization,
which is exploited by the Marching Tetrahedra method [Bloomen-
thal 1988].
The adaptivity and linearity of simplicial grids also make them

a popular choice for polygonalizing implicit complexes, including
implicit arrangements (IA) [Bagley et al. 2016; Guo et al. 2021; Kim
et al. 2000], material interfaces (MI) [Bonnell et al. 2003; Dillard
et al. 2007; Nielson and Franke 1997; Saye 2015], spatial curves
[Kohlbrenner et al. 2023], and intersections of level sets in higher
dimensions [Allgower and Georg 1980; Allgower and Schmidt 1985;
Boissonnat et al. 2023; Min 2003; Weigle and Banks 1996].

2.2 Grid generation for discretization
Grid generation is important for fields such as finite element analysis
(FEA) [Brandts et al. 2020; George et al. 2017] and data visualization

[Borgo et al. 2004]. As the criteria of a “good” grid differ by how
the grid is used, we focus on methods designed for discretizing
implicit shapes. Such methods (ours included) typically take a top-
down refinement approach, where an initial coarse grid is iteratively
refined where needed. The key questions that need to be answered
are (1) which cells need to be refined, and (2) how to refine them.
We review existing solutions for each problem.

2.2.1 Refinement criteria. For the purpose of discretization, a cell
is generally regarded as refinable if it contains some part of the
implicit shape (often known as the zero-crossing test), and if that
part is insufficiently approximated by the discretization.
Many refinement criteria have been developed for implicit sur-

faces. Criteria based on interval analysis allow the refinement al-
gorithm to offer strong topological guarantees [Boissonnat et al.
2008; Chattopadhyay et al. 2012; de Figueiredo et al. 2006; Plantinga
and Vegter 2006; Stander and Hart 1997] and/or accurately capture
the geometric details [de Figueiredo et al. 2006]. However, tight
intervals are difficult to obtain for many practical functions, and
impossible when the function is provided as a “black-box” (e.g., a
deep neural network), while loose intervals may lead to excessive
grid refinement [Chattopadhyay et al. 2012]. Criteria that do not rely
on intervals resort to approximate means to measure the curvature
of the function [Azernikov and Fischer 2005; Bloomenthal 1988; Hui
and Jiang 1999; Molino et al. 2003; Schmidt 1993] or the deviation of
the discretization from the implicit surface [Hall and Warren 1990;
Liang and Zhang 2014; Petersen et al. 1987; Zhang et al. 2005].
In contrast, refinement criteria for implicit complexes are few

and far between. Criteria have been developed to exactly discretize
the IA of low-degree polynomials [Dupont et al. 2007; Mourrain
et al. 2005; Schömer and Wolpert 2006]. Interval-based criteria can
offer topological and/or geometric guarantees in discretizing the
intersection of multiple level sets [Allgower and Georg 1989; Bois-
sonnat and Wintraecken 2022] or singularities in the projection of
surfaces from R4 [Diatta et al. 2019]. However, these criteria are
not suited for general functions or functions without tight intervals.
A few other criteria have been proposed for IA [Kim et al. 2000],
CSG [de Miras and Feito 2002; Tobler et al. 1995], and MI [Zhang
and Qian 2012], but all of them are concerned with only the surface
approximation quality. To the best of our knowledge, there are no
interval-free refinement criteria for any implicit complex that con-
sider the approximation quality of the low-dimensional elements in
the complex (i.e., intersection curves and points).

2.2.2 Refinement method. For discretization purposes, we consider
refinement methods that produce a conformal simplicial grid, where
adjacent cells share complete faces (i.e., no “hanging” nodes). An-
other desirable feature of a simplicial grid is well-shaped cells. In the
context of discretization, poorly shaped (i.e., near-degenerate) cells
are more likely to yield poorly shaped triangles in the discretiza-
tion. Although such elements can be removed in a post-process, for
example by relocating grid points [Hall and Warren 1990; Raman
and Wenger 2008]) or remeshing [de Figueiredo et al. 2006; Dillard
et al. 2007], excessive amount of near-degenerate elements can be
challenging to remove.

One way to produce well-shaped simplices adaptively is regularly
subdividing each simplex that needs to be refined, followed by a

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

82:4 • Ju, Y. et al.

local refinement of adjacent simplices to maintain a conformal grid
[Bey 1995; Grosso et al. 1997; Hall and Warren 1990; Hui and Jiang
1999; Kim et al. 2000; Liu and Joe 1995; Zhang 1995; Zhao et al. 2021].
Note that subdividing a simplex regularly creates many new cells.
A more economic approach is bisection, which splits a simplex into
two halves at the midpoint of a chosen edge. A common choice
of the bisecting edge is the longest edge [Plaza and Rivara 2003;
Rivara 1991], although other choices have also been investigated
[Arnold et al. 2000; Bänsch 1991; Belda Ferrín et al. 2022; Kossaczký
1994; Mitchell 2016]. Like regular subdivision, bisecting a simplex is
followed by local refinement of surrounding simplices to maintain
conformity. When applied to the Kuhn-subdivision of a square or
cube, the longest edge bisection (LEB) method creates simplices
that belong to 2 or 3 similarity classes [Maubach 1995]. Efficient
data structures have also been developed [Gerstner 2003; Weiss and
De Floriani 2009, 2011].

The excellent cell quality, combined with improved compactness
over regular simplex subdivision, make LEB ideal for applications
such as FEA [Anderson et al. 2021] and data visualization [Gerstner
and Pajarola 2000; Gregorski et al. 2002; Pascucci 2004; Zhou et al.
1997]. However, the small number of similarity classes of cells limits
the adaptivity of LEB for discretizing implicit shapes. This results
in unnecessarily high refinement away from the discretization (see
Figure 3 (a)), which we try to avoid in our new method.

3 PRELIMINARIES: IMPLICIT REPRESENTATIONS
Before introducing our method, we briefly review several implicit
shape definitions that are considered in this paper.

3.1 Level sets and zero sets
The level set of a scalar function 𝑓 : R𝑛 → R at level 𝑠 ∈ R, which
we denote by 𝑓 −1 (𝑠), is the loci of points where 𝑓 evaluates to 𝑠:

𝑓 −1 (𝑠) = {𝑥 ∈ R𝑛 | 𝑓 (𝑥) = 𝑠} (1)

For a smooth function 𝑓 , the level set is generally a smooth (𝑛 − 1)-
dimensional manifold. The level set is better known in computer
graphics as the implicit curve or implicit surface for 𝑛 = 2, 3. We call
the level set 𝑓 −1 (0) the zero set, which we abbreviate as 𝑓 −1.
The definition in Equation 1 naturally generalizes to the level

set of a vector-valued function 𝑓 : R𝑛 → R𝑚 , where 𝑚 > 1, as
the loci of points where 𝑓 evaluates to a vector level 𝑠 . We shall
refer to 𝑓 −1 (𝑠) the vector level set when𝑚 > 1 and scalar level set
when𝑚 = 1. Note that 𝑓 can be considered as a set of𝑚 scalar func-
tions {𝑓1, . . . , 𝑓𝑚}, which we call the components of 𝑓 . Geometrically,
𝑓 −1 (𝑠) is the intersection of the𝑚 scalar level sets of its components,

𝑓 −1 (𝑠) =
𝑚⋂
𝑖=1

𝑓 −1𝑖 (𝑠𝑖), (2)

where 𝑠 = {𝑠1, . . . , 𝑠𝑚}. As a result, 𝑓 −1 (𝑠) is a (𝑛 −𝑚)-dimensional
manifold, and it generally only exists for𝑚 ≤ 𝑛. The vector level
set is also known as the implicit manifold [Allgower and Georg
1989; Kohlbrenner et al. 2023] or iso-manifold [Boissonnat and Win-
traecken 2022]. For 𝑛 = 3, the vector level set is the intersection

Fig. 4. Illustration of several types of implicit complexes in R2.

curve (𝑚 = 2) or point (𝑚 = 3) of 𝑚 implicit surfaces. We con-
tinue to use 𝑓 −1 to denote the vector zero set, 𝑓 −1 (0), which is the
intersection of𝑚 scalar zero sets 𝑓 −1

𝑖
.

3.2 Implicit complexes
We use the term implicit complex to refer generally to any shape
composed of zero sets of one or multiple (scalar or vector) functions.
Our method is designed for the implicit complexes described below,
which have found many applications in computer graphics.

Each of these implicit complexes is defined by a single vector
function 𝑓 : R𝑛 → R𝑚 for some𝑚 > 1. Specifically, the complex
consists of zero sets of either subfunctions of 𝑓 or their difference
bases. We call a function 𝑓 ′ a subfunction of 𝑓 , if the components
of 𝑓 ′ are a subset of components of 𝑓 . Given a function 𝑓 ′ with 𝑑
components, the difference basis, 𝐷 (𝑓 ′), is a linearly independent
set of 𝑑 − 1 pairwise differences between the components of 𝑓 ′.

(1) The implicit arrangement (IA) of 𝑓 is the loci of points where
at least one of its component evaluates to zero:

𝐼𝐴(𝑓) = {𝑥 ∈ R𝑛 | 0 ∈ 𝑓 (𝑥)} (3)

Geometrically, the IA is the union of zero sets of all subfunctions of
𝑓 with nomore than𝑛 components. InR3, the IA consists of multiple
implicit surfaces together with their intersection curves and points.
An 2D illustration is given in Figure 4 (right). The IA has been used
for representing complex objects with interior partitioning, such
as geological structures [Bagley et al. 2016; Guo et al. 2021]. It also
includes other implicit complexes as its subsets, such as the ones
described below.
(2) Constructive solid geometry (CSG) [Requicha and Voelcker

1977], a popular modeling approach, constructs a solid shape from
a collection of primitive shapes (e.g., planes, spheres, cylinders, etc.)
using set operations (union, intersection, and complement). The
boundary of an CSG shape can be implicitly defined by a vector
function 𝑓 , whose components encode the primitives as scalar zero
sets, and an CSG expression 𝜋 consisting of max, min and negation
operators that encode the set operations. The CSG boundary is the
scalar zero set of the composition 𝜋 ◦ 𝑓 :

𝐶𝑆𝐺 (𝑓) = (𝜋 ◦ 𝑓)−1 = {𝑥 ∈ R𝑛 |𝜋 (𝑓 (𝑥)) = 0} (4)

Since the composition 𝜋 ◦ 𝑓 is typically only 𝐶0 continuous, the
CSG boundary is a piecewise-smooth (𝑛 − 1)-dimensional manifold.
Each smooth (𝑛 − 1)-dimensional piece is a subset of the scalar zero

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

Adaptive grid generation for discretizing implicit complexes • 82:5

set of a component of 𝑓 , and adjacent smooth pieces meet at vector
zero sets of subfunctions of 𝑓 . By definition, 𝐶𝑆𝐺 (𝑓) ⊆ 𝐼𝐴(𝑓) (see
illustration in Figure 4 middle).
(3) The material interface (MI) of 𝑓 partitions a domain into re-

gions where one component of 𝑓 dominates; that is, some 𝑓𝑖 is strictly
greater than all other 𝑓𝑗 (𝑗 ≠ 𝑖) in that region. Equivalently, MI is
the loci where multiple components of 𝑓 attain the maximum,

𝑀𝐼 (𝑓) = {𝑥 ∈ R𝑛 | | argmax
𝑖

𝑓𝑖 (𝑥) | > 1} (5)

The MI is a network of (𝑛 − 1)-dimensional manifolds meeting at
non-manifold junctions. Each (𝑛 − 1)-dimensional piece separates
regions dominated by two components of 𝑓 (say 𝑓𝑖 , 𝑓𝑗), and it lies
on the scalar zero set of their difference (𝑓𝑖 − 𝑓𝑗). The junction
where more than two regions meet lies on the vector zero set of the
difference basis of the subfunction of 𝑓 whose components dominate
those regions (see illustration in Figure 4 left). The MI is a subset
of the IA of all pairwise differences of the components of 𝑓 . MI has
been widely used for representing complex objects with interior
partitions, such as multi-phase fluids [Kim 2010; Losasso et al. 2006],
composite materials [Dillard et al. 2007; Shammaa et al. 2010], and
anatomical structures [Bertram et al. 2005; Zhang et al. 2008].

(4) Finally, the lower-dimensional elements of an implicit complex
form an implicit complex themselves, which consist exclusively of
vector zero sets. This includes the intersections of two or more scalar
zero sets in IA, the locations where two or more smooth pieces meet
in CSG, and the junction where more than two regions meet in MI.
In R3, the intersection curves of implicit surfaces have been used
for visualizing line features in volume data [Burns et al. 2005; Edels-
brunner and Harer 2002] and reconstructing lower-dimensional
shapes [Kohlbrenner et al. 2023].

4 REFINEMENT CRITERIA FOR ZERO SETS
We start by presenting our refinement criteria for zero sets of scalar
and, more importantly, vector functions, which are the building
blocks of implicit complexes. Our criteria answer the following
general question: given a function 𝑓 : R𝑛 → R𝑚 for any dimension
𝑛 and 𝑚 ∈ [1, 𝑛] and an 𝑛-simplex 𝑡 , does 𝑡 need to be refined
to better discretize the zero set 𝑓 −1? In R3, our criteria consider a
single implicit surface (𝑚 = 1), the intersection curve of two surfaces
(𝑚 = 2), or the intersection point of three surfaces (𝑚 = 3).

Our criteria follow the same principles as existing ones for im-
plicit surfaces. That is, refinement is not needed if either 𝑡 does not
contain any part of 𝑓 −1, or if 𝑓 −1 is already close enough to the
discretization. Unlike existing criteria, our criteria are formulated
so that they are generalizable to vector zero sets and also can be ef-
ficiently computed. Specifically, let 𝑓 be the linear approximation of
𝑓 inside 𝑡 by barycentric interpolation of values of 𝑓 at the vertices
of 𝑡 . We consider the zero set of 𝑓 , 𝑓

−1
, as the discretization of 𝑓 −1

in 𝑡 . We deem 𝑡 refinable for 𝑓 −1 if it passes two tests:
• Zero-crossing test:

𝑓 −1 ∩ 𝑡 ≠ ∅ (6)

• Distance test:

𝑑𝐻 (𝑓 −1 ∩ 𝑡, 𝑓
−1) > 𝜖, (7)

where 𝑑𝐻 (𝑋,𝑌) = sup𝑥∈𝑋 𝑑 (𝑥,𝑌) is the one-sided Hausdorff
distance from 𝑋 to 𝑌 , and 𝜖 is a user-defined threshold.

The distance test checks if the discretization is too far from the
zero set. Our specific choices in the test, including the use of the
one-sided Hausdorff distance and the complete zero set 𝑓

−1
(instead

of its portion in 𝑡), are made to enable efficient computations, as we
shall see below.
While these tests can be performed using interval analysis, in-

tervals on the values and derivatives are not always available for
arbitrary functions. Instead, we perform the tests on local approx-
imations of 𝑓 , called proxies, that can be constructed by sampling
the functions at spatial locations (Section 4.1). Our design of the
proxy leads to efficient implementation of both tests (Sections 4.2
and 4.3); see Equations 9 and 15.

4.1 Proxy construction

We consider the class of functions 𝑓 represented as a convex combi-
nation with linear precision as our proxy. Such a function is defined
by control points 𝑝1, . . . , 𝑝𝑙 that lie inside or on the boundary of
the simplex 𝑡 , where each 𝑝𝑖 is associated with a control value (a
length-𝑚 vector) 𝑏𝑖 = {𝑏𝑖1, . . . , 𝑏

𝑖
𝑚}. The function, 𝑓 , is a weighted

average of 𝑏𝑖 ,

𝑓 (𝑥) =
𝑙∑︁

𝑖=1
𝑤𝑖 (𝑥)𝑏𝑖 , (8)

where the weights𝑤𝑖 (𝑥) satisfy, for all 𝑥 ∈ 𝑡 :

(1) Convexity:𝑤𝑖 (𝑥) ≥ 0 for 𝑖 = 1, . . . , 𝑙 , and
∑𝑙
𝑖=1𝑤𝑖 (𝑥) = 1.

(2) Linear precision:
∑𝑙
𝑖=1𝑤𝑖 (𝑥)𝑝𝑖 = 𝑥 .

The convexity of the weights ensures that 𝑓 (𝑥) lies in the convex
hull of 𝑏 = {𝑏1, . . . , 𝑏𝑙 }, where each 𝑏𝑖 is treated as a point in R𝑚 .
With linear precision, 𝑓 can reproduce the linear interpolation func-
tion 𝑓 by giving 𝑏𝑖 the linearly interpolated value 𝑓 (𝑝𝑖), which we
denote as 𝑏

𝑖
. These properties will be exploited later in implement-

ing the two tests. An example of such 𝑓 is the Bezier simplex [Farin
1986], where the control points lie on a regular grid in 𝑡 and the
weights𝑤𝑖 are the Berstein polynomials. One could also place the
control points in arbitrary locations on the boundary of 𝑡 and use
one of the generalized barycentric coordinates [Floater 2015] as the
weights (as long as the coordinates are positive).

The refinement criteria to be introduced in Sections 4.2 and 4.3
apply to any proxy satisfying the properties above. In our implemen-
tation, we adopt the cubic Bezier simplex as the proxy. The control
points 𝑝𝑖 in a cubic Bezier simplex consist of all vertices of 𝑡 , the
two trisectors on each edge of 𝑡 , and the centroid of each triangle
face of 𝑡 (see Figure 5). Although such a proxy can only reproduce
cubic polynomials, we have found it to be effective in approximat-
ing a variety of non-cubic, and even non-polynomial functions (see
Section 7). We obtain the control values 𝑏𝑖 , known as the Bezier
ordinates, by evaluating 𝑓 and its gradient at the simplex vertices
(see details in Appendix A).

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

82:6 • Ju, Y. et al.

Fig. 5. The control points of a cubic Bezier triangle (left) and tetrahedron
(right), consisting of vertices (dots), edge trisectors (circles) and face cen-
troids (squares).

4.2 Zero-crossing test

We now examine the refinement criteria on a proxy function 𝑓 . The
zero-crossing test checks if 𝑓 −1∩𝑡 ≠ ∅. As discussed in the previous
section, the value 𝑓 (𝑥) at any point 𝑥 ∈ 𝑡 lies in the𝑚-dimensional
convex hull of 𝑏, the control values of 𝑓 . As a result, if there exists
some point 𝑥 such that 𝑓 (𝑥) = 0, then 0 lies in this convex hull. So
a necessary condition to pass the zero-crossing test is

𝑂 ∈ 𝐶𝐻 (𝑏) (9)

where 𝑂 is the origin of R𝑚 and 𝐶𝐻 (𝑏) is the convex hull of 𝑏.
The test in Equation 9 is a generalization of the zero-crossing

test for implicit surfaces (i.e.,𝑚 = 1) that has been commonly used
in previous works [Hall and Warren 1990; Petersen 1984], which
checks if the range of control values 𝑏 encloses 0. For𝑚 > 1, the test
amounts to checking if 𝑂 is not an extreme point in the union set
𝑂 ∪ 𝑏. The extremity check can be written as a linear programming
(LP) problem with the same number of constraints as the number
of points (𝑙 in our case) [Ottmann et al. 1995], which can be solved
in time linear to 𝑙 if the space dimension (𝑚 in our case) is fixed
[Megiddo 1984]. For lower dimensions (e.g., 𝑛 = 2, 3), we use a faster,
brute-force implementation that will be described in Section 7.4.

4.3 Distance test
We next turn to the distance test on the proxy 𝑓 , which checks if

𝑑𝐻 (𝑓 −1 ∩ 𝑡, 𝑓
−1) > 𝜖, (10)

where 𝑓 is the linear approximation of 𝑓 in 𝑡 . While the exact (one-
sided) Hausdorff distance between the two zero sets can be difficult
to compute, we observe that it has the following upper bound:

𝑑𝐻 (𝑓 −1 ∩ 𝑡, 𝑓
−1) = max

𝑥∈ 𝑓 −1∩𝑡
𝑑 (𝑥, 𝑓 −1 (0))

= max
𝑥∈ 𝑓 −1∩𝑡

𝑑 (𝑥, 𝑓 −1 (𝑓 (𝑥)))

≤ max
𝑥∈𝑡

𝑑 (𝑥, 𝑓 −1 (𝑓 (𝑥)))

(The second equality holds because 𝑓 (𝑥) = 0 for all 𝑥 ∈ 𝑓 −1 ∩ 𝑡).
In other words, the upper bound is the maximal distance from any
point 𝑥 ∈ 𝑡 to the level set of the linear function 𝑓 at the level
𝑓 (𝑥). In the following, we will show that this maximum distance is

Fig. 6. Illustration for computing the distance from a point 𝑥 to the level set

𝑓
−1 (𝑓 (𝑥)) for a scalar function in 1D (left) and a two-component function

in 3D (right).

attained at a control point of 𝑓 , and hence the test in Equation 10
can be expressed solely by the control values 𝑏.

We start by deriving an explicit form for the upper bound. It helps
to first consider the simple case of𝑚 = 1. Since 𝑓 is a scalar function,
its level sets are (𝑛 − 1)-dimensional hyperplane in R𝑛 orthogonal
to the gradient 𝑔 = ∇𝑓 . The distance from 𝑥 to the level set of 𝑓 at
level 𝑓 (𝑥) (i.e., 𝑓 −1 (𝑓 (𝑥))) is (𝑓 (𝑥) − 𝑓 (𝑥))/|𝑔| (assuming 𝑔 ≠ 0).
Note that this distance is signed, and a positive distance implies that
𝑥 is on the opposite side of the level set as 𝑔. Figure 6 (left) gives an
illustration for the 1-dimensional case.

Now consider𝑚 > 1. The vector level set 𝑓
−1 (𝑓 (𝑥)) is the inter-

section of𝑚 scalar level sets 𝑓
−1
𝑖 (𝑓𝑖 (𝑥)), each being a hyperplane

orthogonal to a gradient vector 𝑔𝑖 = ∇𝑓 𝑖 (see illustration in Figure
6 (right)). Let 𝑣 be the vector from 𝑥 to its nearest point on this
intersection. Since the signed distance from each scalar level set to
𝑥 is (𝑓𝑖 (𝑥) − 𝑓 𝑖 (𝑥))/|𝑔𝑖 |, we have the identities1,

𝑔𝑇
𝑖
· 𝑣
|𝑔𝑖 |

=
𝑓𝑖 (𝑥) − 𝑓 𝑖 (𝑥)
|𝑔𝑖 |

, ∀𝑖 = 1, . . . ,𝑚. (11)

Furthermore, 𝑣 must lie in the subspace spanned by the basis 𝑔 =

{𝑔1, . . . , 𝑔𝑚}. We can therefore find 𝑣 as

𝑣 = 𝑀 (𝑓 (𝑥) − 𝑓 (𝑥)), (12)

where𝑀 = 𝑔(𝑔𝑇𝑔)−1. The distance 𝑑 (𝑥, 𝑓 −1 (𝑓 (𝑥))) can be written
as

𝑑 (𝑥, 𝑓 −1 (𝑓 (𝑥))) = |𝑣 | = |𝑀 (𝑓 (𝑥) − 𝑓 (𝑥)) |. (13)

To find the maximal distance, observe that both 𝑓 (𝑥), 𝑓 (𝑥) are
convex combinations with the same weights. This is because 𝑓 can
be reproduced by 𝑓 when the control values 𝑏 are the barycentric
interpolants 𝑏, as discussed in Section 4.1. As a result, the difference
𝑓 (𝑥) − 𝑓 (𝑥) is a convex combination of values 𝑏 − 𝑏, and hence it
lies inside the convex hull of 𝑏 − 𝑏 (treated as points in R𝑚). Since
linear transformations (such as𝑀) preserve convexity, 𝑣 lies in the
convex hull of the transformed points 𝑀 (𝑏 − 𝑏). Finally, utilizing

1We use the convention in this paper that all vectors, such as 𝑣 and 𝑔𝑖 in Equation 11,
are column vectors.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

Adaptive grid generation for discretizing implicit complexes • 82:7

the fact that the maximum distance from the origin to a convex hull
is realized at its vertices, we arrive at the bound:

𝑑 (𝑥, 𝑓 −1 (𝑓 (𝑥))) ≤ max
𝑖=1,...,𝑙

|𝑀 (𝑏𝑖 − 𝑏𝑖) |. (14)

Therefore, a necessary condition to pass the distance test of Equation
10 is

max
𝑖=1,...,𝑙

|𝑀 (𝑏𝑖 − 𝑏𝑖) | > 𝜖 (15)

In the case of scalar zero sets (𝑚 = 1), the inside part of the max
operator in Equation 15 reduces to | (𝑏𝑖 − 𝑏𝑖) |/|𝑔|, where the 𝑏𝑖 and
𝑏
𝑖
are scalar values and 𝑔 is the gradient vector of 𝑓 . This test is

similar to tests proposed by other researchers [Gregorski et al. 2002;
Petersen et al. 1987; Zhang et al. 2005], who also consider bounding
the difference between a function and its linear approximation after
a gradient-based normalization. Unlike previous works, our test can
be applied generally to any vector zero set (𝑚 > 1).
One issue that arises in implementing the test in Equation 15

is that it involves inverting matrices that could become singular.
For example, computing the gradient 𝑔 needs to invert a matrix
composed of the edge vectors of simplex 𝑡 , which is singular if 𝑡
is degenerate (i.e., has no 𝑛-dimensional measure). Computing 𝑀

requires inverting 𝑔𝑇𝑔, which is singular if rank(𝑔) < 𝑚 (e.g., a
component of 𝑓 has zero gradient, or two components have co-
linear gradients, etc.). To address the issue, we can rewrite the test
in an inversion-free form (see Appendix B). The re-formulation not
only is robust against singular matrices, but also exhibits improved
numerical accuracy when the matrices are almost singular.

5 REFINEMENT CRITERIA FOR IMPLICIT COMPLEXES
Building on the refinement criteria for zero sets, we now describe
criteria for the implicit complexes discussed in Section 3. Recall that
such a complex 𝑀 is defined by a vector function 𝑓 : R𝑛 → R𝑚
where𝑚 can be any positive integer (possibly greater than 𝑛), and it
consists of zero sets of either the subfunctions of 𝑓 or their difference
bases. We start by presenting a general structure of the criteria that
is shared by all implicit complexes being considered (Section 5.1),
and then discuss details specific to each complex (Section 5.2).

5.1 General criteria
Similar to the refinability for zero sets, a simplex 𝑡 is considered
refinable for𝑀 if it contains some portion of𝑀 and if this portion
is too far from its discretization (i.e., the implicit complex defined
by the linear approximation 𝑓).

A straight-forward way to check refinability is to see if 𝑡 is refin-
able for any zero set that makes up 𝑀 . However, this would lead
to over-refinement if 𝑀 contains partial zero sets, as in the cases
of CSG and MI. For example, a 3D CSG shape consists of patches
of implicit surfaces that are trimmed by other implicit surfaces. To
avoid refining around the part of a zero set that does not belong
to𝑀 , we identify component functions of 𝑓 that contribute to the
portion of 𝑀 in 𝑡 as active components. The definition of an active
component differs by the type of the implicit complex, which will be
introduced in the next section. We deem 𝑡 refinable if it is refinable

for any zero set making up𝑀 that involves only active components of
𝑓 in 𝑡 .
To efficiently check refinability, we observe that the zero set of

a function ℎ (or its difference basis, 𝐷 (ℎ)) intersects 𝑡 only if the
zero set of every subfunction of ℎ also intersects 𝑡 . We therefore
examine the subfunctions of ℎ in the order of increasing number of
components, and we ignore a function ℎ with 𝑑 components if 𝑡 fails
the zero-crossing test for any subfunction (or its difference basis) of
ℎ with 𝑑 − 1 components. The pseudo-code of our implementation
is given in Algorithm 1. Here, gather(𝐹𝑑) produces a list of (𝑑 +
1)-component subfunctions ℎ of 𝑓 such that every 𝑑-component
subfunction of ℎ is in 𝐹𝑑 .
Our criteria accommodate a separate distance threshold 𝜖𝑑 for

checking zero sets of a 𝑑-component function, for each 𝑑 ∈ [1,𝑚].
This makes it possible to refine the grid only for discretizing the
lower-dimensional elements of an implicit complex (e.g., the sharp
features in CSG or the junction graph in MI). Specifically, setting
𝜖𝑖 = ∞ for all 𝑖 < 𝑛 − 𝑑 will prevent the grid to be refined around
zero sets whose dimension is greater than 𝑑 .

Algorithm 1: Refinement criteria for IA, CSG or MI
Input: 𝑛-dimensional simplex 𝑡
Input: Function 𝑓 : R𝑛 → R𝑚
Input: Distance thresholds 𝜖 = {𝜖1, . . . , 𝜖𝑛}
Output: True if 𝑡 is refinable; False otherwise
/* This color: used only in IA and CSG */;
/* This color: used only in MI */;
𝐹1 ← active components of 𝑓 in 𝑡 ;
forall ℎ ∈ 𝐹1 do

if 𝑡 passes distance test for {ℎ−1, 𝜖1} then
return True

end
end
for 𝑑 = 2, . . . ,𝑛 (or 𝑛 + 1) do

𝐹𝑑 ← ∅;
forall ℎ ∈ gather(𝐹𝑑−1) do

if 𝑡 passes zero-crossing test for ℎ−1 (or 𝐷 (ℎ)−1) then
𝐹𝑑 ← 𝐹𝑑 ∪ {ℎ};
if 𝑡 passes distance test for {ℎ−1, 𝜖𝑑 } (or
{𝐷 (ℎ)−1, 𝜖𝑑−1}) then

return True
end

end
end

end
return False;

5.2 Active components
We now detail, for each type of implicit complex𝑀 , the criteria for
a component 𝑓𝑖 of 𝑓 to be active in 𝑡 . To avoid missing geometric
details, our criteria are intentionally conservative, in that we want
to identify all 𝑓𝑖 that possibly contribute to the portion of 𝑀 in 𝑡 .
Our criteria will again utilize the proxy function 𝑓 , as constructed

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

82:8 • Ju, Y. et al.

in Section 4.1, and particularly its control values 𝑏. Note that, since
𝑓 is a convex combination of 𝑏, the value of a component 𝑓𝑖 (𝑥) at
any point 𝑥 ∈ 𝑡 is bounded within the range of the control values
𝑏𝑖 , which we denote by 𝑟𝑖 . Our criteria for active components will
be expressed by this range.
• IA: Since 𝐼𝐴(𝑓) (Equation 3) contains only complete zero sets,
we deem a component 𝑓𝑖 active if its scalar zero set intersects
𝑡 . Using the zero-crossing test (Equation 15), we only need to
check if 0 ∈ 𝑟𝑖 .
• CSG: Recall that 𝐶𝑆𝐺 (𝑓) (Equation 4) is the scalar zero set
of the composition 𝜋 ◦ 𝑓 , where 𝜋 is some CSG expression
consisting of min, max, and negation operations on the com-
ponents of 𝑓 . We consider a component active if its scalar
zero set might lie on (𝜋 ◦ 𝑓)−1 ∩ 𝑡 , if it is not empty. Lever-
aging the hierarchical structure of 𝜋 , we collect the list of
active components in a recursive manner. We first estimate
the range of 𝜋 ◦ 𝑓 , denoted by 𝑟 (𝜋), recursively on 𝜋 following
[Duff 1992; Hijazi et al. 2010],

𝑟 (𝜋) =

[△(𝑟 𝑙 (𝜋1), 𝑟 𝑙 (𝜋2)), △(𝑟ℎ (𝜋1), 𝑟ℎ (𝜋2))], if 𝜋 = △(𝜋1, 𝜋2)
[¬(𝑟ℎ (𝜋 ′)),¬(𝑟 𝑙 (𝜋 ′))], if 𝜋 = ¬(𝜋 ′)
𝑟𝑖 , if 𝜋 = 𝑓𝑖

where △ can be either min or max, ¬ is negation, and 𝑟 𝑙 , 𝑟ℎ
denotes the lower and higher ends of a range 𝑟 . We then recur-
sively collect the list of active components for an expression
𝜋 , denoted by 𝐴(𝜋), as the union of the active lists for the
operands of 𝜋 , if 𝑟 (𝜋) contains zero, and empty otherwise:

𝐴(𝜋) =


𝐴(𝜋1) ∪𝐴(𝜋2), if 𝜋 = △(𝜋1, 𝜋2) and 0 ∈ 𝑟 (𝜋)
𝐴(𝜋 ′), if 𝜋 = ¬(𝜋 ′) and 0 ∈ 𝑟 (𝜋)
{𝑓𝑖 }, if 𝜋 = 𝑓𝑖 and 0 ∈ 𝑟𝑖
∅, otherwise

• MI: Recall that𝑀𝐼 (𝑓) (Equation 5) partitions the space into
regions within which one component of 𝑓 dominates the
others. We therefore consider a component 𝑓𝑖 active if it dom-
inates all other components at some point in 𝑡 . A necessary
condition is that there is no range 𝑟 𝑗 (𝑗 ≠ 𝑖) that is strictly
higher than 𝑟𝑖 . Here, we say a range [𝑎1, 𝑏1] is strictly higher
(or lower) than another range [𝑎2, 𝑏2] if 𝑎1 > 𝑏2 (or 𝑏1 < 𝑎2).
It is easy to verify that the ranges in the set 𝑅 = {𝑟1, . . . , 𝑟𝑚}
satisfying this condition are those whose higher end is no
smaller than the highest lower end among all ranges in 𝑅.
These ranges, which belong to active components, can be
efficiently found by two sweeps over 𝑅, first identifying the
highest lower end and then checking it against each range.

6 SIMPLICIAL REFINEMENT
We now consider how to refine a simplicial grid using the criteria de-
scribed in the previous sections. We adopt the top-down refinement
regime that is common in grid generation. Given an initial grid and
some criteria (e.g., Algorithm 1), our goal is to produce a maximally
refined grid where no cell is deemed refinable by the criteria. While
our implementation is specialized for the practically useful cases of
𝑛 = 2, 3, our methodology is not specific to dimensionality.

Our method is a variation of the classical longest edge bisection
(LEB) method. Recall from Section 2.2.2 that this scheme refines a

Fig. 7. Bisecting triangles (left) and tetrahedra (right) incident to an edge 𝑒 .

simplicial cell by splitting it into two at the mid-point of its longest
edge, followed by a local refinement of surrounding cells to restore
a conformal grid. To avoid the unnecessary refinement in LEB away
from the implicit shape, as seen in Figure 3 (a), our key idea is to relax
the requirement that every cell has to be split by its longest edge.
Instead, for any chosen edge 𝑒 , we bisect all cells incident to 𝑒 at the
mid-point of 𝑒 , regardless of whether 𝑒 is the longest edge of that
cell (see illustration in Figure 7). Note that the operation maintains
the conformity of the grid, which avoids the local refinement in
LEB. Our choice of the bisecting edge 𝑒 is motivated by the need to
maintain cell quality. Specifically, we call an edge refinable if any
of its incident cells is refinable according to the given refinement
criteria. At each iteration of the algorithm, we bisect the longest
refinable edge in the current grid. We call our method the longest
refinable edge bisection (LREB) method.

We have observed that LREB producesmore adaptive and compact
grids than LEB, as seen in Figure 3 (b). The adaptivity is made
possible by larger and more irregularly-shaped cells away from the
implicit geometry. Although lacking a theoretical bound, we provide
experimental evidence in Section 7.3 that the worst quality among
cells enclosing the implicit shape produced by LREB appears to be
lower-bounded for a variety of implicit surfaces and complexes.

We give the pseudo-code of our complete refinement algorithm in
Algorithm 2. We use a priority queue to maintain all refinable cells,
prioritized by the length of each cell’s longest edge. Each iteration
splits the cell at the head of the queue by its longest edge (which is
the longest refinable edge in the grid), as well as all cells (refinable
or not) sharing that edge. New cells are checked for refinability and
the refinable ones are placed into the queue. The algorithm stops
when the queue is empty or some termination criteria is met (e.g.,
the longest refinable edge is shorter than a given threshold 𝐿).

7 RESULTS
We show results of our refinement method on implicit complexes
in both 2D and 3D. In all examples, the domain is a unit square (in
2D) or cube (in 3D). To create the initial grid (𝐺𝑖𝑛𝑖𝑡 in Algorithm
2), we adopt the Kuhn-subdivision, which splits a square into two
triangles and a cube into six tetrahedra, although our algorithm
is not specific to this initialization. Unless stated otherwise, the
minimum edge length threshold (𝐿 in Algorithm 2) is set to 0, and
hence the algorithm terminates only when the grid is fully refined
(i.e., no cell is deemed refinable). We adopt the discretization method
of [Du et al. 2022], which computes the exact IA and MI of the
piecewise linear functions in 2D and 3D. CSG is discretized by first
computing the IA and extracting the relevant subset.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

Adaptive grid generation for discretizing implicit complexes • 82:9

Algorithm 2: Grid refinement using LREB
Input: 𝑛-dimensional initial simplicial grid 𝐺𝑖𝑛𝑖𝑡

Input: Function 𝑓 : R𝑛 → R𝑚
Input: Distance thresholds 𝜖 = {𝜖1, . . . , 𝜖𝑛}
Input: Edge length threshold 𝐿
Output: A grid for discretizing 𝑓 −1

𝐺 ← 𝐺𝑖𝑛𝑖𝑡 ;
𝑄 ← ∅ /* priority queue */;
forall cell 𝑡 ∈ 𝐺 do

if {𝑡, 𝑓 , 𝜖} is refinable by Algorithm 1 then
𝑄.𝑝𝑢𝑠ℎ(𝑡, 𝑙𝑒𝑛(𝑡)) /* 𝑙𝑒𝑛(𝑡): longest edge length in 𝑡 */;

end
end
while 𝑄 ≠ ∅ do

𝑡 ← 𝑄.𝑝𝑜𝑝 ();
if 𝑙𝑒𝑛(𝑡) < 𝐿 then

break;
end
𝑒 ← longest edge in 𝑡 ;
𝑇 ← all cells in 𝐺 incident to 𝑒;
forall 𝑠 ∈ 𝑇 do

𝑄.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑠);
{𝑠1, 𝑠2} ← split cells of 𝑠 after bisecting 𝑒;
𝐺 ← 𝐺 \ {𝑠} ∪ {𝑠1, 𝑠2};
for 𝑖 = 1, 2 do

if {𝑠𝑖 , 𝑓 , 𝜖} is refinable by Algorithm 1 then
𝑄.𝑝𝑢𝑠ℎ(𝑠𝑖 , 𝑙𝑒𝑛(𝑠𝑖));

end
end

end
end
return 𝐺 ;

7.1 Zero-crossing and distance tests
We start by evaluating the effectiveness of our two tests, zero-
crossing test and distance test (Section 4), on zero sets of functions
with different number of components.

We first examine the tests on a scalar zero set. Although they
are similar to previous tests in the literature, we include them not
only for completeness, but also since their behavior echoes those
we shall see on vector zero sets. Figure 8 shows the refined grids
for the same implicit curve used in Figure 3, by only performing the
zero-crossing test (with some 𝐿 > 0 to avoid infinite refinement) or
the distance test. Observe that the zero-crossing test alone results in
highly adaptive triangles away from the curve, as desired, but over-
refines the region along the curve. On the contrary, the distance
test alone creates desirable cell sizes and shapes along the curve,
but over-refines the rest of the domain. The latter is because the
distance test considers the level sets at all levels (not just the zero
set). Combining both tests yields well-shaped and adaptive cells
along the implicit curve while avoiding over-refinement away from
the curve, as seen in Figure 3 (b).

Fig. 8. Refined grids and resulting discretization for the tear-drop curve by
performing only the zero-crossing test (a) or only the distance test (b). The
result of using both tests is shown in Figure 3 (b).

Fig. 9. The refined grids and resulting discretizations of the IA of a 2-
component function 𝑓 = { 𝑓1, 𝑓2} in 2D created using different settings:
checking only the criteria on each scalar level set 𝑓 −1

𝑖
(a), also perform-

ing the distance test on the vector level set 𝑓 −1 (b), and performing both
zero-crossing and distance tests on 𝑓 −1 (c). Each curve segment in the IA is
assigned a different color, and arrows point to 𝑓 −1.

We now examine the tests on vector zero sets. We start with a
2-component function 𝑓 = {𝑓1, 𝑓2} in 2D in Figure 9. The implicit
curves 𝑓 −11 , 𝑓 −12 are circles with large radii and are almost tangent at
their intersection points (𝑓 −1). As the curves are nearly flat, check-
ing only the criteria on each curve leads to a coarse grid, where
the intersection points are missed by the discretization (see (a)). If
we additionally perform the distance test on the intersection points
(𝑓 −1), we obtain a more refined grid that recovers the intersection
points (see the arrows in (b)), but the refinement extends to ev-
erywhere that the two curves are close by. By also performing the

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

82:10 • Ju, Y. et al.

Fig. 10. Discretization of the IA of a 2-component function 𝑓 = { 𝑓1, 𝑓2} in
3D (top) on grids refined under three settings (showing zoomed-in views):
checking only the criteria on each 𝑓 −1

𝑖
(a), adding only the zero-crossing

test on 𝑓 −1 (b), adding only the distance test on 𝑓 −1 (c), and performing
both tests on 𝑓 −1 (d). Each patch in the IA is assigned a different color.

zero-crossing test on the intersections, our algorithm localizes the
refinement to the vicinity of the intersection points (see (c)).
We show a 3D example of 2-component function in Figure 10.

The implicit surfaces 𝑓 −11 , 𝑓 −12 consist of a sphere and a cylinder,
whose intersection curve (𝑓 −1) has a region of high curvature that is
poorly discretized if we only check the refinement criteria on each
surface. Adding the zero-crossing test on the intersection curve
(with some 𝐿 > 0) results in densely refined cells everywhere along
the curve, whereas performing only the distance test can adapt the
level of refinement to the curvature of the curve but at the cost
of over-refining nearby regions where the two surfaces are close.
By combining both tests on the intersection curve, our algorithm
captures the intersection curve without unnecessary refinement.
We next consider a 3-component function example in Figure 11.

The implicit surfaces 𝑓 −11 , 𝑓 −12 , 𝑓 −13 are three intersecting cylinders
whose axes are almost parallel. These cylinders intersect at several
near-coinciding curves (zero sets of 2-component subfunctions),
which in turn intersect at two points 𝑓 −1 (red dots in the top view).
However, if we only check the refinement criteria on the surfaces
and their intersection curves, the intersection points are missed
on the discretization (see (a)). This is because both the surfaces
and the intersection curves are nearly “flat” and hence a coarse
grid resolution is sufficient to approximate them well. The two

Fig. 11. Discretization of the IA of a 3-component function 𝑓 in 3D (top;
showing two views) on grids refinedwithout checking the refinement criteria
on the 3-vector zero set 𝑓 −1 (but checking all scalar and 2-vector zero sets)
(a), and with the criteria turned on (b).

Fig. 12. The two-sided Hausdorff distance between the analytical and dis-
crete zero sets of a scalar function (a sphere of radius 0.3), a 2-component
function (Figure 10), and a 3-component function (Figure 11), over decreas-
ing refinement threshold 𝜖 .

intersection points are recovered only after we additionally perform
the tests on them, which refines the grid in their vicinity (see (b)).
To further validate our distance test, we measure the Hausdorff

distance between a zero set and its discretization on a refined grid.
We consider zero sets with analytical forms, including the zero set of
a scalar function (a sphere with radius 0.3), a 2-component function
(the intersection curve in Figure 10), and a 3-component function
(the two intersection points in Figure 11). Although our distance
test is based on the one-sided Hausdorff distance, we measure the
two-sided (symmetric) Hausdorff distance for validation, and we
do so at a range of threshold values. As shown in Figure 12, the
distance between the actual zero set and the discretization remains
consistently lower than the threshold value used.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

Adaptive grid generation for discretizing implicit complexes • 82:11

Fig. 13. Comparing discretization of an MI (the Voronoi diagram of three
spheres) on a grid refined by applying the refinement criteria to all compo-
nents (a) and only active components (b). Observe the over-refinement in
(a), pointed by arrows.

7.2 Active components
We evaluate the effectiveness of active components, which are used
in our refinement criteria to avoid unnecessary refinement for im-
plicit complexes that contain partial zero sets, such as CSG and MI
(Section 5.2).

Figure 13 shows a simple MI in 3D, as the Voronoi diagram of
three spheres with different radii (also known as the Apollonius
Diagram). Without restricting the refinement criteria to only active
components (i.e., by treating every component of 𝑓 as active in every
cell), the grid is refined both over the MI patches and along their
extensions (see arrows in (a)). These extensions lie on the zero set of
the difference between a pair of components, but they are dominated
(i.e., having lower values than) by another component. The over-
refinement is avoided by considering only active components.

An alternative approach for avoiding unnecessary refinement in
discretizing CSG is to ignore empty grid cells that do not intersect
with the CSG surface [Duff 1992; Hijazi et al. 2010]. However, this
approach still considers all components of 𝑓 in a non-empty cell,
even though they do not all contribute to the shape. This can result
in over-refinement where a primitive (e.g., the cube faces in Figure
14 (a)) intersects the trimmed-away part of another primitive (e.g.,
the sphere in Figure 14 (a)). In contrast, our refinement criteria can
reduce such interference by considering only active components in
a non-empty cell, as shown in Figure 14 (b).

7.3 Simplicial refinement
We compare the compactness of the grid between our refinement
method (LREB) and the classical longest edge bisection (LEB)method
(as implemented in the MFEM package [Anderson et al. 2021]) on
an implicit surface example in Figure 15. Observe that LREB consis-
tently produces around a third of the total number of cells produced
by LEB at the same threshold.

The compactness of LREB comes at the cost of reduced cell quality,
particularly those away from the implicit shape. To evaluate the
quality of cells around the shape, we took all 3D shapes that we have
used so far in the paper and measured the worst quality of the cells
around the shape as the distance threshold 𝜖 decreases to a very
small amount (0.01% of the bounding box size). Here the quality of

Fig. 14. Comparing discretization of a CSG shape, consisting of a cube and
a truncated sphere (the complete sphere is shown in transparency), on a
grid refined by only avoiding empty cells (a) and by considering only active
components in each cell (right). Observe the over-refinement in (a) where
the sphere intersects the cube.

Fig. 15. Comparing the longest edge bisection (LEB) method and our longest
refinable edge bisection (LREB) method on the tear-drop surface (a surface
of revolution whose profile is defined by the tear-drop curve in Figure 3),
showing a cross-section of the grid refined at 𝜖 = 0.005 (top; cells containing
the geometry are highlighted), the implicit surface extracted from the grid
(middle), and the graph of number of cells as a function of the distance
threshold 𝜖 (bottom).

a tetrahedron is measured as the ratio between its in-radius over
its out-radius, normalized by the maximum of such ratio (1/3). As
shown in Figure 16, the worst quality across all thresholds in all
examples is around 0.03. Observe that the graphs for many examples
(except for CSG) oscillate rather than trending downward, which
suggests the possible existence of a lower bound.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

82:12 • Ju, Y. et al.

Fig. 16. Worst quality (measured by normalized ratio between in-radius and
out-radius) among tetrahedra containing the implicit shape generated by
our LREB method as a function of decreasing 𝜖 , for all 3D examples shown
so far in the paper.

7.4 Implementation and performance
Our algorithm is implemented in C++ for 𝑛 = 2, 3 dimensions with-
out using any parallelization or third-party packages. We use an
alternative approach for checking extremity in our zero-crossing
test (Equation 9), which we found to be faster than LP due to the
small problem size. Recall that the zero-crossing test checks whether
the origin of R𝑚 is an extremal point in a set of 𝑙 + 1 points, where
𝑚 ≤ 𝑛 and 𝑙 is the number of control points in the cubic Bezier
simplex (10 for 𝑛 = 2 and 20 for 𝑛 = 3). We enumerate all𝑚-tuples
of points. For each tuple, we check if the origin lies on a different
side of the line (𝑚 = 2) or plane (𝑚 = 3) formed by the tuple from the
remaining points that are not in the tuple. If so, the test returns false.
The test returns true when the enumeration successfully completes.
All timings are recorded on a PC with a 10-core Intel i9-10900X
3.70Hz CPU and 64GB of RAM.
We evaluate the performance of our algorithm on the IA of 18

implicit spheres with the same radius that are located in a regular
pattern (see Figure 17 top-left). Figure 17 (top-right) plots the run-
ning time of each part of our algorithm as the distance threshold 𝜖
decreases. Observe that the running time is dominated by evaluat-
ing the function values and gradients at the grid points (red) and
checking the criteria (blue), and the latter in turn is dominated by
computing the proxy (solid line) and performing the tests on implicit
surfaces (short dashes). Note that while the tests on intersection
curves and points (medium and long dashes) are more expensive
to perform than those on surfaces, those tests are only invoked for
cells where there are more than one (two for MI) active components,
which are a small fraction of total cells. Our algorithm scales roughly
linearly with both the number of function components and the total
number of cells, as shown in the two plots in Figure 17 bottom.

Fig. 17. Timing of our algorithm on an IA consisting of intersecting spheres
(top-left; using 𝜖 = 0.0001), plotted against decreasing threshold 𝜖 (top-
right; for 18 spheres), increasing number of spheres (bottom-left; at 𝜖 =

0.0001), and increasing number of tetrahedra (bottom-right; for 18 spheres by
varying 𝜖). The timing is broken down into evaluation of function values and
gradients (red), cell splitting (green), and checking the refinement criteria,
including computing the proxy and quantities needed for robust evaluation
(Appendix B; solid blue), and performing the zero-crossing and distance
tests for subfunctions with different number of components𝑑 (dashed blue).

7.5 More examples
Figure 1 shows examples of all four types of implicit complexes that
are considered in this paper, including an IA of 10 implicit surfaces
(a), a CSG shape defined by the same set of surfaces (b), an MI as the
Voronoi diagram of five lines (c), and the network of junction curves
of the MI (d). Observe from the visualization of the grids that our
method can effectively adapt the grid resolution to the geometric
complexity in each example without unnecessary refinement.
We next show a few challenging examples of discretizing im-

plicit surfaces and complexes to further demonstrate the benefit
of our algorithm, particularly its adaptivity and refinement around
intersections.
An adaptive grid is particularly useful when the function is ex-

pensive to evaluate. As the runtime of grid generation is dominated
by function evaluations, reducing the number of grid points (where
evaluation takes place) is the key to improving efficiency. Figure
18 gives an example of such a function, which is an Hermite RBF
defined by around 1000 points sampled from the Max Planck model
(obtained from [Huang et al. 2019]). Note that the evaluation time of
a Hermite RBF scales linearly with the number of points. Evaluating
this function on a uniform cubic grid of size 1003 (over 1 million
evaluations) took 27.76 seconds, whereas our algorithm took 1.19
seconds to generated a grid with only 21, 286 points (at 𝜖 = 0.00125).
Despite a much more compact grid, the implicit surface computed
on our adaptive grid better captures geometric details, such as eyes
and ears, than that computed from the uniform grid.
Another scenario that demands adaptivity is when the implicit

shape contains features at different scales. While a uniform grid
would need an excessive number of cells to capture the smallest
feature, an adaptive grid would need much fewer cells as it can

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

Adaptive grid generation for discretizing implicit complexes • 82:13

Fig. 18. Comparing the implicit surfaces of a Hermite RBF function with
1000 sites (left) extracted on a uniform tetrahedral grid (tessellation of a
1003 cubic grid) and on our adaptively refined grid (𝜖 = 0.00125).

Fig. 19. Comparing the implicit surface of an SDF extracted on our adap-
tively refined grid (𝜖 = 0.0005) and on a uniform tetrahedral grid (tessellation
of a 1003 cubic grid). The SDF is created by Shadertoy user Flopine [2020],
released under CC BY-NC-SA 3.0 License.

adapt the cell size to the feature’s scale. To this end, we created a
stress test in Figure 19 where the input function is the SDF (signed
distance function) from the surface of three nested “key” shapes
at decreasing sizes. Our algorithm at 𝜖 = 0.0005 creates a grid of
2, 225, 796 cells that enables the discretization to capture all three
keys (observe the variable triangle sizes on different part of the keys
in the zoom-in view). In comparison, the surface extracted from a
uniform tetrahedral grid with 5 × 106 cells (obtained from a 1003
cubic grid) can barely reconstruct the largest key.
Finally, we demonstrate the intersection-awareness of our algo-

rithm on several CSG examples. The shape in Figure 20 is created
by subtracting three cylinders from a torus. Since the cylinders are

Fig. 20. A CSG shape defined by subtracting three cylinders from a torus,
discretized on a grid that is adapted to both the surfaces and their intersec-
tion curves (a) or adapted only to surfaces (b).

almost tangent to the torus, the shape contains a few very narrow
spots (e.g., in the boxed region). As our algorithm adapts the grid
to the geometry of both the surface patches and their intersections,
it can faithfully capture the shape of each narrow band (see the
zoomed-in view in (a)). In contrast, adapting the grid to only the
surfaces (i.e., only checking the refinement criteria for scalar zero
sets) leads to artifacts at the narrow spots (see the zoomed-in view in
(b)). Similar observations can be made in Figure 21, which takes the
union of 10 randomly located tori and subtracts it from the union of
another 10 tori, and Figure 22, which performs subtraction (a) and
union (b) of two copies of the same dog head surface (each defined
by an Hermite RBF function) that are slightly shifted from each
other. By adapting the grid to intersection curves in addition to the
surfaces, our algorithm better captures fine features and produces
smoother intersection curves.

8 DISCUSSIONS
We presented a new method for generating adaptively refined sim-
plicial grids for discretizing implicit surfaces and complexes. Our
method adapts the grid resolution to not only surfaces but also
their lower-dimensional intersections, thus enabling more accurate
discretizations without excessive refinement. Our method does not
require interval analysis, and hence can be applied to arbitrary func-
tions, and it can produce grids for several types of commonly used
implicit complexes.
The effectiveness of our method largely depends on how well

the input function can be approximated by the proxy within each
simplex. Our choice of the proxy, the cubic Bezier simplex, may
fail to adequately capture the variation of non-trivial functions and
thus lead to either insufficient or redundant refinement of the grid.
We demonstrate these two failure modes in Figures 23 and 24. In
Figure 23, we discretize a high-order algebraic curve in R2 (the rose

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

82:14 • Ju, Y. et al.

Fig. 21. (a): A CSG shape defined by random subtraction and addition of
20 tori, discretized on a grid that is adapted to both the surfaces and their
intersection curves (a) or adapted only to surfaces (b).

Fig. 22. (a,b): The result of subtraction (a) or addition (b) between two
slightly shifted dog head surfaces (each defined by anHermite RBF function),
discretized on our adaptively refined grid. (c,d): Comparing discretizations
with or without adaptive refinement for the intersection curves.

curve) using two domains with different sizes. Our method produces
an adequately refined grid in the larger domain (top) but fails to
refine beyond the initial grid in the smaller domain (bottom). This is
because the proxies in both triangles of the initial grid do not pass
the zero-crossing test. In Figure 24, our method over-refines the grid
in a region far from the zero-set (near the center). This is because
the function there has a high amount of oscillation (see the insert),
which causes our proxy to over-estimate the function range. Using

Fig. 23. Discretizing the 4-pedal rose curve (zero set of 𝑓 (𝑥, 𝑦) = 4𝑥2𝑦2 −
(𝑥2 + 𝑦2)3) using a larger domain (top) and a smaller domain (bottom).
The curves are visualized on the left as the intersection (red) between the
height surface of 𝑓 (𝑥, 𝑦) (blue) and the zero plane (gray). The dotted curve
in lower-right indicates where the rose curve should be, but missed by the
discretization, due to an under-refined grid (made up of two triangles).

Fig. 24. Discretizing a wavy circle (zero set of 𝑓 (𝑟, 𝜃) = 0.2𝑟 0.1 sin(16𝜃) +
𝑟 2 − 1, where 𝑟, 𝜃 are polar coordinates). Left: the curve visualized as the
intersection (red) between the height surface of the function (blue) and the
zero plane (gray). The zoom-in shows the region around the origin. Right:
the refined grid and discretization (red). The arrow points to an over-refined
region at the origin, far away from the curve.

a higher-order proxy may alleviate these issues, but ultimately an
interval analysis may be necessary.
While our refinement method (LREB) produces more compact

grids than the classical LEB method, it comes at the cost of signifi-
cantly worsened simplex quality away from the implicit geometry.
This makes LREB unsuited for applications that require well-shaped
simplices over the entire domain, such as FEA and visualization.
Another drawback of LREB is that it needs to explicitly store the
vertex coordinates and simplex connectivity. In contrast, the reg-
ularity of simplices produced by LEB enables space-efficient data
structures that can implicitly encode the geometry and connectivity
of the grid (see review in [Weiss and De Floriani 2011]).

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

Adaptive grid generation for discretizing implicit complexes • 82:15

There are several venues of future work that we wish to pursue.
Our current construction of the proxy function requires evaluating
gradients. This can be avoided by first constructing the triangular
Lagrange interpolant from values of 𝑓 at the control points [Farin
1986] and then converting to the Bezier form. We would like to
explore refinement criteria for other implicitly defined shapes, such
as F-reps [Pasko et al. 1995], extremal features (e.g., ridges and
valleys) of unsigned functions, and topological features in scalar or
vector functions (e.g., separatrices). Another interesting direction
is to extend our method to higher-order grids [Jiang et al. 2021;
Khanteimouri and Campen 2023]. The extension could leverage the
common representation of a typical curved simplex and our proxy
function - both as a Bezier simplex.

ACKNOWLEDGMENTS
This work is supported by NIH grant U2C CA233303, NSF grant
EF-1921728, and a gift from Adobe Systems. We would like to thank
Nicholas Sharp, Marcos Slomp and Inigo Quilez for helpful discus-
sions, and the anonymous reviewers for their suggestions.

REFERENCES
Eugene Allgower and Kurt Georg. 1980. Simplicial and Continuation Methods for

Approximating Fixed Points and Solutions to Systems of Equations. SIAM Rev. 22, 1
(jan 1980), 28–85. https://doi.org/10.1137/1022003

Eugene L. Allgower and Kurt Georg. 1989. Estimates for piecewise linear approxima-
tions of implicitly defined manifolds. Applied Mathematics Letters 2 (1989), 111–115.
https://api.semanticscholar.org/CorpusID:123564143

Eugene L. Allgower and Phillip H. Schmidt. 1985. An Algorithm for Piecewise-Linear
Approximation of an Implicitly Defined Manifold. SIAM J. Numer. Anal. 22, 2 (1985),
322–346. https://doi.org/10.1137/0722020 arXiv:https://doi.org/10.1137/0722020

Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier,
Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, et al.
2021. MFEM: A Modular Finite Element Methods Library. Computers & Mathematics
with Applications 81 (2021), 42–74. https://doi.org/10.1016/j.camwa.2020.06.009

Douglas N. Arnold, Arup K. Mukherjee, and Luc Pouly. 2000. Locally Adapted
Tetrahedral Meshes Using Bisection. SIAM J. Sci. Comput. 22 (2000), 431–448.
https://api.semanticscholar.org/CorpusID:13167330

Sergei Azernikov and Anath Fischer. 2005. Anisotropic Meshing of Implicit Surfaces. In
Proceedings of the International Conference on Shape Modeling and Applications 2005
(SMI ’05). IEEE Computer Society, USA, 94–103. https://doi.org/10.1109/SMI.2005.5

Brigham Bagley, Shankar Sastry, and Ross Whitaker. 2016. A Marching-tetrahedra
Algorithm for Feature-preserving Meshing of Piecewise-smooth Implicit Surfaces.
Procedia Engineering 163 (12 2016), 162–174.

Eberhard Bänsch. 1991. Local mesh refinement in 2 and 3 dimensions. IMPACT Comput.
Sci. Eng. 3 (1991), 181–191. https://api.semanticscholar.org/CorpusID:33479075

Guillem Belda Ferrín, Eloi Ruiz Gironès, and Francisco Javier Roca Navarro. 2022.
Bisecting with Optimal Similarity Bound on 3D Unstructured Conformal Meshes. In
Proceedings of the 2022 SIAM International Meshing Roundtable. Zenodo, USA, 86–87.
https://doi.org/10.5281/zenodo.6562417

Martin Bertram, Gerd Reis, Rolf Hendrik van Lengen, Sascha Köhn, and Hans Hagen.
2005. Non-manifold mesh extraction from time-varying segmented volumes used
for modeling a human heart.. In EuroVis. Citeseer, 199–206.

Jürgen Bey. 1995. Tetrahedral grid refinement. Computing 55 (1995), 355–378. https:
//api.semanticscholar.org/CorpusID:20829446

Jules Bloomenthal. 1988. Polygonization of implicit surfaces. Comput. Aided Geom. Des.
5 (1988), 341–355. https://api.semanticscholar.org/CorpusID:16474404

Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter. 2008. Isotopic implicit
surface meshing. Discrete & Computational Geometry 39, 1-3 (2008), 138–157. https:
//doi.org/10.1007/s00454-007-9011-4

Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. 2023. Tracing
Isomanifolds in R d in Time Polynomial in d using Coxeter–Freudenthal–Kuhn
Triangulations. SIAM J. Comput. 52, 2 (2023), 452–486. https://doi.org/10.1137/
21M1412918 arXiv:https://doi.org/10.1137/21M1412918

Jean-Daniel Boissonnat and Mathijs Wintraecken. 2022. The Topological Correctness
of PL Approximations of Isomanifolds. Found. Comput. Math. 22, 4 (aug 2022),
967–1012. https://doi.org/10.1007/s10208-021-09520-0

Kathleen Sue Bonnell, Mark A Duchaineau, Daniel R Schikore, Bernd Hamann, and Ken-
neth I Joy. 2003. Material interface reconstruction. IEEE Transactions on Visualization

and Computer Graphics 9, 4 (2003), 500–511.
Rita Borgo, Paolo Cignoni, and Roberto Scopigno. 2004. Simplicial-based Multireso-

lution Volume Datasets Management: An Overview. In Geometric Modeling for
Scientific Visualization. Springer Verlag, Berlin, Heidelberg, 309–327. https:
//api.semanticscholar.org/CorpusID:54075053

Jan Brandts, Sergey Korotov, Michal Křížek, et al. 2020. Simplicial partitions with
applications to the finite element method. Springer.

Michael Burns, Janek Klawe, Szymon Rusinkiewicz, Adam Finkelstein, and Doug De-
Carlo. 2005. Line drawings from volume data. ACM Transactions on Graphics (TOG)
24, 3 (2005), 512–518.

Amit Chattopadhyay, Simon Plantinga, and Gert Vegter. 2012. Certified Meshing of
Radial Basis Function Based Isosurfaces. Vis. Comput. 28, 5 (may 2012), 445–462.
https://doi.org/10.1007/s00371-011-0627-2

Bruno Rodrigues De Araújo, Daniel S Lopes, Pauline Jepp, Joaquim A Jorge, and Brian
Wyvill. 2015. A survey on implicit surface polygonization. ACM Computing Surveys
(CSUR) 47, 4 (2015), 1–39.

L. de Figueiredo, A. Paiva, T. Lewiner, and H. Lopes. 2006. Robust adaptive meshes
for implicit surfaces. In 2012 25th SIBGRAPI Conference on Graphics, Patterns and
Images. IEEE Computer Society, Los Alamitos, CA, USA, 205–212. https://doi.org/
10.1109/SIBGRAPI.2006.40

J Ruiz de Miras and Francisco R Feito. 2002. Direct and robust voxelization and
polygonization of free-form CSG solids. In Proceedings. First International Sym-
posium on 3D Data Processing Visualization and Transmission. 352–355. https:
//doi.org/10.1109/TDPVT.2002.1024082

Tamal Krishna Dey and Andrew G. Slatton. 2013. Localized Delaunay Refinement for
Piecewise-Smooth Complexes. In Proceedings of the Twenty-Ninth Annual Symposium
on Computational Geometry (Rio de Janeiro, Brazil) (SoCG ’13). Association for
Computing Machinery, New York, NY, USA, 47–56. https://doi.org/10.1145/2462356.
2462376

Sény Diatta, Guillaume Moroz, and Marc Pouget. 2019. Reliable Computation of the
Singularities of the Projection in R3 of a Generic Surface of R4. In MACIS 2019 -
Mathematical Aspects of Computer and Information Sciences. Gebze-Istanbul, Turkey.
https://inria.hal.science/hal-02406758

Scott Dillard, John Bingert, Dan Thoma, and Bernd Hamann. 2007. Construction of Sim-
plified Boundary Surfaces from Serial-sectioned Metal Micrographs. Visualization
and Computer Graphics, IEEE Transactions on 13 (12 2007), 1528–1535.

Xingyi Du, Qingnan Zhou, Nathan A. Carr, and Tao Ju. 2022. Robust computation
of implicit surface networks for piecewise linear functions. ACM Transactions
on Graphics (TOG) 41 (2022), 1 – 16. https://api.semanticscholar.org/CorpusID:
249917144

Tom Duff. 1992. Interval arithmetic recursive subdivision for implicit functions and
constructive solid geometry. ACM SIGGRAPH computer graphics 26, 2 (1992), 131–
138.

Laurent Dupont, Michael Hemmer, Sylvain Petitjean, and Elmar Schömer. 2007. Com-
plete, exact and efficient implementation for computing the adjacency graph of an
arrangement of quadrics. In Proceedings of the 15th Annual European Conference on
Algorithms (Eilat, Israel) (ESA’07). Springer-Verlag, Berlin, Heidelberg, 633–644.

Herbert Edelsbrunner and John Harer. 2002. Jacobi sets of multiple Morse functions.
Foundations of Computational Mathematics, Minneapolis (2002), 37–57.

Gerald Farin. 1986. Triangular bernstein-bézier patches. Computer Aided Geometric
Design 3, 2 (1986), 83–127.

Michael S Floater. 2015. Generalized barycentric coordinates and applications. Acta
Numerica 24 (2015), 161–214.

Flopine. 2020. ShATI - Clé. https://www.shadertoy.com/view/wssBDf.
Paul Louis George, H. Borouchaki, F. Alauzet, P. Laug, A. Loseille, D. Marcum, and L.

Maréchal. 2017. Mesh Generation and Mesh Adaptivity: Theory and Techniques. John
Wiley & Sons, Ltd, USA, 1–51. https://doi.org/10.1002/9781119176817.ecm2012
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2012

T. Gerstner. 2003. Top-down view-dependent terrain triangulation using the octagon
metric. Technical Report. University of Bonn.

Thomas Gerstner and Renato Pajarola. 2000. Topology preserving and controlled
topology simplifying multiresolution isosurface extraction. In Proceedings of the
Conference on Visualization ’00 (Salt Lake City, Utah, USA) (VIS ’00). IEEE Computer
Society Press, Washington, DC, USA, 259–266.

Benjamin Gregorski, Mark Duchaineau, Peter Lindstrom, Valerio Pascucci, and Ken-
neth I. Joy. 2002. Interactive view-dependent rendering of large isosurfaces. In
Proceedings of the Conference on Visualization ’02 (Boston, Massachusetts) (VIS ’02).
IEEE Computer Society, USA, 475–484.

Roberto Grosso, Christoph Lürig, and Thomas Ertl. 1997. The multilevel finite element
method for adaptive mesh optimization and visualization of volume data. In Pro-
ceedings of the 8th Conference on Visualization ’97 (Phoenix, Arizona, USA) (VIS ’97).
IEEE Computer Society Press, Washington, DC, USA, 387–ff.

Jiateng Guo, Xulei Wang, Jiangmei Wang, Xinwei Dai, Lixin Wu, Chaoling Li, Fengdan
Li, Shanjun Liu, and Mark Walter Jessell. 2021. Three-dimensional geological
modeling and spatial analysis from geotechnical borehole data using an implicit
surface and marching tetrahedra algorithm. Engineering Geology 284 (2021), 106047.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

https://doi.org/10.1137/1022003
https://api.semanticscholar.org/CorpusID:123564143
https://doi.org/10.1137/0722020
https://arxiv.org/abs/https://doi.org/10.1137/0722020
https://doi.org/10.1016/j.camwa.2020.06.009
https://api.semanticscholar.org/CorpusID:13167330
https://doi.org/10.1109/SMI.2005.5
https://api.semanticscholar.org/CorpusID:33479075
https://doi.org/10.5281/zenodo.6562417
https://api.semanticscholar.org/CorpusID:20829446
https://api.semanticscholar.org/CorpusID:20829446
https://api.semanticscholar.org/CorpusID:16474404
https://doi.org/10.1007/s00454-007-9011-4
https://doi.org/10.1007/s00454-007-9011-4
https://doi.org/10.1137/21M1412918
https://doi.org/10.1137/21M1412918
https://arxiv.org/abs/https://doi.org/10.1137/21M1412918
https://doi.org/10.1007/s10208-021-09520-0
https://api.semanticscholar.org/CorpusID:54075053
https://api.semanticscholar.org/CorpusID:54075053
https://doi.org/10.1007/s00371-011-0627-2
https://doi.org/10.1109/SIBGRAPI.2006.40
https://doi.org/10.1109/SIBGRAPI.2006.40
https://doi.org/10.1109/TDPVT.2002.1024082
https://doi.org/10.1109/TDPVT.2002.1024082
https://doi.org/10.1145/2462356.2462376
https://doi.org/10.1145/2462356.2462376
https://inria.hal.science/hal-02406758
https://api.semanticscholar.org/CorpusID:249917144
https://api.semanticscholar.org/CorpusID:249917144
https://www.shadertoy.com/view/wssBDf
https://doi.org/10.1002/9781119176817.ecm2012
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2012

82:16 • Ju, Y. et al.

Mark Hall and Joe Warren. 1990. Adaptive polygonalization of implicitly defined
surfaces. IEEE Computer Graphics and Applications 10, 6 (1990), 33–42. https:
//doi.org/10.1109/38.62694

Younis Hijazi, Aaron Knoll, Mathias Schott, Andrew Kensler, and Charles Hansen.
2010. Csg operations of arbitrary primitives with interval arithmetic and real-time
ray casting. In Dagstuhl Follow-Ups, Vol. 1. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational implicit point set surfaces.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.

Kin Chuen Hui and Z.H. Jiang. 1999. Tetrahedra Based Adaptive
Polygonization of Implicit Surface Patches. Computer Graphics Fo-
rum 18, 1 (1999), 57–68. https://doi.org/10.1111/1467-8659.00302
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00302

Zhongshi Jiang, Ziyi Zhang, Yixin Hu, Teseo Schneider, Denis Zorin, and Daniele
Panozzo. 2021. Bijective and coarse high-order tetrahedral meshes. ACM Transac-
tions on Graphics (TOG) 40, 4 (2021), 1–16.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of
hermite data. In Proceedings of the 29th annual conference on Computer graphics and
interactive techniques. 339–346.

Payam Khanteimouri and Marcel Campen. 2023. 3D Bézier Guarding: Boundary-
Conforming Curved Tetrahedral Meshing. ACM Transactions on Graphics (TOG) 42,
6 (2023), 1–19.

Byungmoon Kim. 2010. Multi-phase fluid simulations using regional level sets. ACM
Transactions on Graphics (TOG) 29, 6 (2010), 1–8.

Dae-Hyun Kim, Ulf Doring, and Beat Bruderlin. 2000. Polygonization of Non-manifolds
With the Aid of Interval Operators. ACM Eurographics Workshop on Implicit Surfaces
(2000), 145–151. https://api.semanticscholar.org/CorpusID:14381080

Maximilian Kohlbrenner, Singchun Lee, Marc Alexa, and Misha Kazhdan. 2023. Poisson
Manifold Reconstruction — Beyond Co-dimension One. Computer Graphics Forum
42 (08 2023). https://doi.org/10.1111/cgf.14907

Igor Kossaczký. 1994. A recursive approach to local mesh refinement in two and three
dimensions. J. Comput. Appl. Math. 55 (1994), 275–288. https://api.semanticscholar.
org/CorpusID:123381194

Xinghua Liang and Yongjie Jessica Zhang. 2014. An octree-based dual contouring
method for triangular and tetrahedral mesh generation with guaranteed angle
range. Engineering with Computers 30 (2014), 211–222. https://api.semanticscholar.
org/CorpusID:14861190

Anwei Liu and Barry Joe. 1995. Quality Local Refinement of Tetrahedral Meshes
Based on Bisection. SIAM Journal on Scientific Computing 16, 6 (1995), 1269–1291.
https://doi.org/10.1137/0916074 arXiv:https://doi.org/10.1137/0916074

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm.. In SIGGRAPH, Maureen C. Stone (Ed.). ACM,
163–169.

Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. 2006. Multiple Inter-
acting Liquids. ACM Trans. Graph. 25, 3 (jul 2006), 812–819.

Joseph M. Maubach. 1995. Local Bisection Refinement for N-Simplicial Grids Generated
by Reflection. SIAM Journal on Scientific Computing 16, 1 (1995), 210–227. https:
//doi.org/10.1137/0916014 arXiv:https://doi.org/10.1137/0916014

Nimrod Megiddo. 1984. Linear programming in linear time when the dimension is
fixed. Journal of the ACM (JACM) 31, 1 (1984), 114–127.

Chohong Min. 2003. Simplicial isosurfacing in arbitrary dimension and codimension. J.
Comput. Phys. 190, 1 (2003), 295–310. https://doi.org/10.1016/S0021-9991(03)00275-4

William F Mitchell. 2016. 30 years of newest vertex bisection. In AIP Conference
Proceedings, Vol. 1738. AIP Publishing.

Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fedkiw. 2003. A Crystalline,
Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra. 12th
Int. Meshing Roundtable, 103–114.

Bernard Mourrain, Jean-Pierre Técourt, and Monique Teillaud. 2005. On the compu-
tation of an arrangement of quadrics in 3d. Computational Geometry 30, 2 (2005),
145–164.

Gregory Nielson and R. Franke. 1997. Computing the separating surface for segmented
data. 229–233.

ThOttmann, Sven Schuierer, and Subbiah Soundaralakshmi. 1995. Enumerating extreme
points in higher dimensions. In STACS 95, Ernst W. Mayr and Claude Puech (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 562–570.

Steve Oudot, Laurent Rineau, and Mariette Yvinec. 2010. Meshing volumes with
curved boundaries. Engineering with Computers 26, 3 (2010), 265–279. https:
//doi.org/10.1007/s00366-009-0166-x

Valerio Pascucci. 2004. Isosurface computation made simple: hardware acceleration,
adaptive refinement and tetrahedral stripping. In Proceedings of the Sixth Joint Euro-
graphics - IEEE TCVG Conference on Visualization (Konstanz, Germany) (VISSYM’04).
Eurographics Association, Goslar, DEU, 293–300.

Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir Savchenko. 1995. Func-
tion representation in geometric modeling: concepts, implementation and applica-
tions. The visual computer 11 (1995), 429–446.

Carl S. Petersen. 1984. Adaptive contouring of three-dimensional surfaces. Computer
Aided Geometric Design 1, 1 (1984), 61–74. https://doi.org/10.1016/0167-8396(84)
90004-9

Carl S. Petersen, Bruce R. Piper, and Andrew J. Worsey. 1987. Adaptive contouring
of a trivariate interpolant. Geometric Modeling: Algorithms and New Trends (1987),
385–395.

Simon Plantinga and Gert Vegter. 2006. Isotopic meshing of implicit surfaces. The
Visual Computer 23 (2006), 45–58. https://api.semanticscholar.org/CorpusID:751474

Angel Plaza andMaria-Cecilia Rivara. 2003. Mesh Refinement Based on the 8-Tetrahedra
Longest- Edge Partition.. In Proceedings of the 12th International Meshing Roundtable.
67–78.

Sundaresan Raman and Rephael Wenger. 2008. Quality Isosurface Mesh Gener-
ation Using an Extended Marching Cubes Lookup Table. Computer Graphics
Forum 27, 3 (2008), 791–798. https://doi.org/10.1111/j.1467-8659.2008.01209.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2008.01209.x

Aristides AG Requicha and Herbert B Voelcker. 1977. Constructive solid geometry.
(1977).

María Cecilia Rivara. 1991. Local modification of meshes for adaptive and/or multigrid
finite-element methods. J. Comput. Appl. Math. 36 (1991), 79–89. https://api.
semanticscholar.org/CorpusID:120011902

RI Saye. 2015. An algorithm to mesh interconnected surfaces via the Voronoi interface.
Engineering with Computers 31, 1 (2015), 123–139.

Scott Schaefer and Joe Warren. 2004. Dual marching cubes: Primal contouring of dual
grids. In 12th Pacific Conference on Computer Graphics and Applications, 2004. PG
2004. Proceedings. IEEE, 70–76.

Michael F. W. Schmidt. 1993. Cutting cubesvisualizing implicit surfaces by adaptive
polygonization. The Visual Computer 10 (1993), 101–115. https://api.semanticscholar.
org/CorpusID:35201048

Elmar Schömer andNicolaWolpert. 2006. An exact and efficient approach for computing
a cell in an arrangement of quadrics. Computational Geometry 33, 1-2 (2006), 65–97.

M Haitham Shammaa, Yutaka Ohtake, and Hiromasa Suzuki. 2010. Segmentation
of multi-material CT data of mechanical parts for extracting boundary surfaces.
Computer-Aided Design 42, 2 (2010), 118–128.

Barton T. Stander and John C. Hart. 1997. Guaranteeing the topology of an implicit
surface polygonization for interactive modeling. In Proceedings of the 24th An-
nual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97).
ACM Press/Addison-Wesley Publishing Co., USA, 279–286. https://doi.org/10.1145/
258734.258868

Robert F. Tobler, Thomas Galla, and Werner Purgathofer. 1995. ACSGM – An
adaptive CSG meshing algorithm. Technical Report TR-186-2-95-13. Institute
of Computer Graphics and Algorithms, Vienna University of Technology, Fa-
voritenstrasse 9-11/E193-02, A-1040 Vienna, Austria. https://www.cg.tuwien.
ac.at/research/publications/1995/Tobler-1995-AAC/ human contact: technical-
report@cg.tuwien.ac.at.

Gokul Varadhan, Shankar Krishnan, TVN Sriram, and Dinesh Manocha. 2004. Topology
preserving surface extraction using adaptive subdivision. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing. 235–244.

Chris Weigle and David C. Banks. 1996. Complex-valued contour meshing. In Proceed-
ings of the 7th Conference on Visualization ’96 (San Francisco, California, USA) (VIS
’96). IEEE Computer Society Press, Washington, DC, USA, 173–ff.

Kenneth Weiss and Leila De Floriani. 2009. Supercubes: A high-level primitive for
diamond hierarchies. IEEE Transactions on Visualization and Computer Graphics 15,
6 (2009), 1603–1610.

Kenneth Weiss and Leila De Floriani. 2011. Simplex and Diamond Hi-
erarchies: Models and Applications. Computer Graphics Forum 30,
8 (2011), 2127–2155. https://doi.org/10.1111/j.1467-8659.2011.01853.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01853.x

Hassler Whitney. 1957. Geometric Integration Theory. Princeton University Press.
Shangyou Zhang. 1995. Successive subdivisions of tetrahedra and multigrid methods

on tetrahedral meshes. Houston J. Math 21, 3 (1995), 541–556.
Yongjie Zhang, Chandrajit Bajaj, and Bong-Soo Sohn. 2005. 3D finite element meshing

from imaging data. Computer Methods in Applied Mechanics and Engineering 194, 48
(2005), 5083–5106. https://doi.org/10.1016/j.cma.2004.11.026 Unstructured Mesh
Generation.

Yongjie Zhang, Thomas JR Hughes, and Chandrajit L Bajaj. 2008. Automatic 3d mesh
generation for a domain with multiple materials. In Proceedings of the 16th interna-
tional meshing roundtable. Springer, 367–386.

Yongjie Jessica Zhang and Jin Qian. 2012. Resolving topology ambiguity for multiple-
material domains. Computer Methods in Applied Mechanics and Engineering 247
(2012), 166–178.

Tong Zhao, Pierre Alliez, Tamy Boubekeur, Laurent Busé, and Jean-Marc Thiery.
2021. Progressive Discrete Domains for Implicit Surface Reconstruction. Com-
puter Graphics Forum 40, 5 (2021), 143–156. https://doi.org/10.1111/cgf.14363
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14363

Yong Zhou, Baoquan Chen, and Arie Kaufman. 1997. Multiresolution tetrahedral
framework for visualizing regular volume data. In Proceedings of the 8th Conference

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

https://doi.org/10.1109/38.62694
https://doi.org/10.1109/38.62694
https://doi.org/10.1111/1467-8659.00302
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00302
https://api.semanticscholar.org/CorpusID:14381080
https://doi.org/10.1111/cgf.14907
https://api.semanticscholar.org/CorpusID:123381194
https://api.semanticscholar.org/CorpusID:123381194
https://api.semanticscholar.org/CorpusID:14861190
https://api.semanticscholar.org/CorpusID:14861190
https://doi.org/10.1137/0916074
https://arxiv.org/abs/https://doi.org/10.1137/0916074
https://doi.org/10.1137/0916014
https://doi.org/10.1137/0916014
https://arxiv.org/abs/https://doi.org/10.1137/0916014
https://doi.org/10.1016/S0021-9991(03)00275-4
https://doi.org/10.1007/s00366-009-0166-x
https://doi.org/10.1007/s00366-009-0166-x
https://doi.org/10.1016/0167-8396(84)90004-9
https://doi.org/10.1016/0167-8396(84)90004-9
https://api.semanticscholar.org/CorpusID:751474
https://doi.org/10.1111/j.1467-8659.2008.01209.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2008.01209.x
https://api.semanticscholar.org/CorpusID:120011902
https://api.semanticscholar.org/CorpusID:120011902
https://api.semanticscholar.org/CorpusID:35201048
https://api.semanticscholar.org/CorpusID:35201048
https://doi.org/10.1145/258734.258868
https://doi.org/10.1145/258734.258868
https://www.cg.tuwien.ac.at/research/publications/1995/Tobler-1995-AAC/
https://www.cg.tuwien.ac.at/research/publications/1995/Tobler-1995-AAC/
https://doi.org/10.1111/j.1467-8659.2011.01853.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01853.x
https://doi.org/10.1016/j.cma.2004.11.026
https://doi.org/10.1111/cgf.14363
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14363

Adaptive grid generation for discretizing implicit complexes • 82:17

on Visualization ’97 (Phoenix, Arizona, USA) (VIS ’97). IEEE Computer Society Press,
Washington, DC, USA, 135–ff.

A CUBIC BEZIER SIMPLEX
We give details of the cubic Bezier simplex and its construction from
sampled values and gradients at the simplex vertices. A thorough
discussion can be found in [Farin 1986].
As mentioned in Section 4.1, the control points 𝑝1, . . . , 𝑝𝑙 in an

𝑛-dimensional cubic Bezier simplex 𝑡 include the vertices, edge
trisectors, and face centroids of 𝑡 . The barycentric coordinates (w.r.t.
to the 𝑛 + 1 vertices of 𝑡) at each control point 𝑝𝑖 thus have the form
{𝜆𝑖1, . . . , 𝜆

𝑖
𝑛+1}/3, where each 𝜆𝑖

𝑗
∈ {0, 1, 2, 3} and ∑𝑛+1

𝑗=1 𝜆
𝑖
𝑗
= 3. The

Bernstein polynomials 𝑤𝑖 (𝑥) (𝑖 = 1, . . . , 𝑙) for any 𝑥 ∈ 𝑡 has the
form:

𝑤𝑖 (𝑥) =
3!

𝜆𝑖1! · · · 𝜆
𝑖
𝑛+1!

𝛽1 (𝑥)𝜆
𝑖
1 · · · 𝛽𝑛+1 (𝑥)𝜆

𝑖
𝑛+1

where 𝛽 𝑗 (𝑥) is the 𝑗-th barycentric coordinate of 𝑥 .
We obtain the control values (or the Bezier ordinates) 𝑏1, . . . , 𝑏𝑙

following the “nine parameter interpolant” method described in
[Farin 1986], which interpolates given values and gradient vectors
at each vertex of 𝑡 . Specifically, let 𝑓 (𝑞) and ∇𝑓 (𝑞) be the value and
gradient at a vertex 𝑞,
• If 𝑝𝑖 is a vertex of 𝑡 , then 𝑏𝑖 = 𝑓 (𝑝𝑖).
• If 𝑝𝑖 is a trisector of edge 𝑝 𝑗𝑝𝑘 and closer to 𝑝 𝑗 , then

𝑏𝑖 = 𝑏 𝑗 + 1
3
∇𝑓 (𝑝 𝑗) · (𝑝𝑘 − 𝑝 𝑗)

• If 𝑝𝑖 is the centroid of a triangle with vertices 𝑉 and edge
trisectors 𝐸, then

𝑏𝑖 =
1
4

∑︁
𝑝 𝑗 ∈𝐸

𝑏 𝑗 − 1
6

∑︁
𝑝 𝑗 ∈𝑉

𝑏 𝑗

Note that the control values 𝑏𝑖 at the triangle centroids do not affect
the interpolation of the given values and gradients. The choices
made above have the property that the resulting interpolant repro-
duces all polynomial 𝑓 up to quadratics.

B INVERSION-FREE DISTANCE TEST
We show how the distance test of Equation 15 can be re-formulated
without matrix inversions. To further reduce numerical errors when
implementing on floating-point numbers, we also remove divisions
and square-roots in the calculations.
Let 𝑝1, . . . , 𝑝𝑛+1 be the vertices of an 𝑛-dimensional simplex 𝑡 ,

𝑣 the 𝑛-by-𝑛 matrix whose columns are the edge vectors 𝑝𝑖 − 𝑝1
(𝑖 = 2, . . . , 𝑛 + 1), and ℎ the 𝑛-by-𝑚 matrix whose columns are the
differences of function 𝑓 : R𝑛 → R𝑚 along each edge, 𝑓 (𝑝𝑖) − 𝑓 (𝑝1).
The gradients 𝑔 = ∇𝑓 = {∇𝑓1, . . . ,∇𝑓𝑚} thus satisfy 𝑔𝑇 · 𝑣 = ℎ, and
hence can be found by

𝑔𝑇 = ℎ · 𝑣−1 = ℎ · adj(𝑣)
det(𝑣)

where adj(𝑣) and det(𝑣) are the adjugate and determinant of the
square matrix 𝑣 . Note that computing both adj(𝑣) and det(𝑣) in-
volves only additions and multiplications (no divisions).

Fig. 25. IA of a two-component function, whose components are slighted
shifted spherical distance functions, discretized on a grid refined by the
original distance test in Equation 15 (b) and the reformulated test in Equa-
tion 16 (c). An exploded view of the IA is shown in (a). .

To construct the matrix𝑀 = 𝑔(𝑔𝑇𝑔)−1 used in the test (Equation
15), we first re-write 𝑔𝑇𝑔 as

𝑔𝑇𝑔 =
𝑤𝑇𝑤

det(𝑣)2
,

where 𝑤 = adj(𝑣)𝑇ℎ𝑇 is an𝑚-by-𝑚 matrix. Let 𝑢 = 𝑤𝑇𝑤 , we can
express the inverse (𝑔𝑇𝑔)−1 as

(𝑔𝑇𝑔)−1 = det(𝑣)2 adj(𝑢)
det(𝑢) .

Finally, we can write𝑀 as

𝑀 = 𝑔(𝑔𝑇𝑔)−1 = 𝑤

det(𝑣) det(𝑣)
2 adj(𝑢)
det(𝑢) =

det(𝑣)
det(𝑢)𝑤 adj(𝑢).

Again, note that computing the quantities𝑤,𝑢, adj(𝑢), det(𝑢) does
not involve divisions or matrix inversions.
We now substitute the above expression of𝑀 into Equation 15,

which yields the inequality

max
𝑖=1,...,𝑙

| det(𝑣)
det(𝑢)𝑤 adj(𝑢) (𝑏𝑖 − 𝑏𝑖) | > 𝜖,

where 𝑏𝑖 , 𝑏
𝑖
are length-𝑚 column vectors. After multiplying both

sides by | det(𝑢) | and then squaring both sides (to avoid computing
the vector norm | · |, which involves a square root), we arrive at
an equivalent formulation of Equation 15 that is free of matrix
inversions, divisions, and square-roots:

max
𝑖=1,...,𝑙

det(𝑣)2𝑟𝑡𝑟 > 𝜖2 det(𝑢)2, (16)

where 𝑟 = 𝑤 adj(𝑢) (𝑏𝑖 − 𝑏𝑖).
To demonstrate the improved numerical accuracy of the reformu-

lated test (Equation 16) over the original (Equation 15), we compared
both in discretizing the IA of a two-component function in Figure
25. The components 𝑓1, 𝑓2 are identical spherical functions slightly
shifted from each other, and hence their gradients 𝑔1, 𝑔2 are almost
identical (and hence 𝑔𝑇𝑔 is almost singular) along the circle where
the two spheres intersect. Compared to the reformulated test (shown
in (c)), the original test results in significantly more refinement along
the intersection curve (see (b)). This indicates that the original test
over-estimates the distance error (left-hand side of Equation 15),
which we attribute to inverting the almost-singular 𝑔𝑇𝑔.

ACM Trans. Graph., Vol. 43, No. 4, Article 82. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Previous work
	2.1 Grid-based discretization
	2.2 Grid generation for discretization

	3 Preliminaries: implicit representations
	3.1 Level sets and zero sets
	3.2 Implicit complexes

	4 Refinement criteria for zero sets
	4.1 Proxy construction
	4.2 Zero-crossing test
	4.3 Distance test

	5 Refinement criteria for implicit complexes
	5.1 General criteria
	5.2 Active components

	6 Simplicial refinement
	7 Results
	7.1 Zero-crossing and distance tests
	7.2 Active components
	7.3 Simplicial refinement
	7.4 Implementation and performance
	7.5 More examples

	8 Discussions
	Acknowledgments
	References
	A Cubic Bezier simplex
	B Inversion-free Distance test

